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Benjamin Tam,1,2,3 Zixin Qin,1,2,3 Bojin Zhao,1,2,3 San Ming Wang,1,2,3,* and Chon Lok Lei1,2,3,4,*

SUMMARY

Functional classification of genetic variants is a key for their clinical applications in
patient care. However, abundant variant data generated by the next-generation
DNA sequencing technologies limit the use of experimental methods for their
classification. Here, we developed a protein structure and deep learning (DL)-
based system for genetic variant classification, DL-RP-MDS, which comprises
two principles: 1) Extracting protein structural and thermodynamics information
using the Ramachandran plot-molecular dynamics simulation (RP-MDS) method,
2) combining those data with an unsupervised learning model of auto-encoder
and a neural network classifier to identify the statistical significance patterns of
the structural changes. We observed that DL-RP-MDS provided higher specificity
than over 20widely used in silicomethods in classifying the variants of three DNA
damage repair genes: TP53,MLH1, andMSH2. DL-RP-MDS offers a powerful plat-
form for high-throughput genetic variant classification. The software and online
application are available at https://genemutation.fhs.um.edu.mo/DL-RP-MDS/.

INTRODUCTION

Next-generation DNA sequencing technologies allow the collection of a massive quantity of genetic

variation data at the population level, with the majority as single base variants. Although identifying the

genetic variants causing apparent damage in protein structure can be straightforward, determining the

functional impact of missense variants, in which a single base variant causes an amino acid change in a pro-

tein, is challenging as they mainly affect local rather than global protein structure. Currently, a large quan-

tity of missense variants identified in the human genome remains unclassified.1,2 For example, of the 56,483

missense variants identified in 170 DNA damage repair (DDR) genes, 50,427 (89.3%) remain as variant of

uncertain significance (VUS).3 The lack of functional information for the genetic variants limits their clinical

applications.4 Although many in silico tools have been developed with the aim of determining the func-

tional impact of missense variants, the American College of Medical Genetics and Genomics and the As-

sociation for Molecular Pathology (ACMG-AMP) guidelines conclude that the accuracy of these methods

remains in question.5

From the atomistic point of view, the functionality of a protein is determined by its structure maintained by

intramolecular and intermolecular interactions through electrostatic, hydrogen bonding, Van der Waal,

etc. As such, the impact of a genetic variant on protein function can be reflected by its impact on protein

structural stability. In our previous study, we developed the Ramachandran plot-molecular dynamics simu-

lation (RP-MDS) method to measure the impact of missense variants on protein structure. In the process,

the torsion angle phi (4) and psi (J) of the protein secondary structural backbone are assimilated

throughout MD trajectories. The alteration of backbone information reflects the impacts of the altered res-

idue on protein structure.6 Applying RP-MDS, we were able to classify multiple TP53 VUS.6,7 However, there

are several limitations in RP-MDS, including the need to manually define the cut-off value in order to sepa-

rate between deleterious and non-deleterious variants, the difficulty to analyze the genes with insufficient

known benign and pathogenic variants as the training data, and the challenge to measure minor structural

changes often masked within the statistically averaged values.

Deep learning (DL) is increasingly applied in molecular biology studies.8–10 We hypothesized that the inte-

gration of DL with RP-MDSmay significantly increase the power of RP-MDS for genetic variant classification.
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To test our hypothesis, we included the two approaches to form the DL-RP-MDSmethod. DL-RP-MDS com-

bined an unsupervised learningmodel, the auto-encoder (AE), with amulti-layer neural network classifier to

generate a probabilistic classification.11,12 AE is a special class of neural network. It can match its outputs to

its inputs through model learning and compress the high-dimensional input space to a low-dimensional

latent space (encoder). The encoder then can prioritize the input with the high information density and

the complex relationship between the inputs. The decoder (the second part of AE) then reconstructs an

output with the same dimensions as the inputs from the latent space, with the dataset adhering to the rules

learned from the encoder. AEs share the same concept as other dimension-reduction models, such as prin-

cipal components analysis (PCA) and multidimensional scaling (MS). However, AEs are more suitable for

highly nonlinear data, such as those generated by RP-MDS.13,14 Furthermore, the Synthetic Minority Over-

sampling TEchnique (SMOTE) in DL was used to address the issue of imbalanced training data, i.e., the

known benign and deleterious variants.15 Imbalanced data are well known to pose issues in classifica-

tion,16,17 as these imbalanced training data may skew the classification toward (majority) deleterious vari-

ants by ignoring the (minority) benign region. SMOTE enhances recognition of the minorities dataset by

broadening and strengthening the region by generating ‘‘synthetic’’ training data. In the process, the mi-

nority feature regions are created by joining any or all the minority from the nearest neighbors. By inserting

random samples within the minority region, SMOTE effectively turns the decision region toward more gen-

eral to enhance the regional contrast between benign and deleterious variants to facilitate variant classi-

fication. An overview of the DL-RP-MDS approach is shown in Figure 1.

By testing the missense variants from the human tumor suppressor gene TP53,18 and DNA mismatch re-

pairs MLH1, and MSH2,19,20 we show that DL-RP-MDS can successfully classify missense variants with

over 98% balanced accuracy (BA), demonstrating that DL-RP-MDS is better than most of the widely used

computational methods for genetic variant classification. Overall, the study provides a road map for the

application of DL to assess missense variants.

Figure 1. Procedures of DL-RP-MDS

Missense variants in TP53, MLH1, and MSH2 were extracted from ClinVar, and used as training and testing datasets. MDS generated trajectories of the

corresponding protein structure. Benign and pathogenic variant RSPs were extracted from the trajectories and used as the input of the DL pipeline.

Autoencoder and neural network classifier identified the energy landscape of the RSP, predicted the deleteriousness of the missense variant, and

categorized it as either ‘‘deleterious’’ or ‘‘unknown’’.
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RESULTS

Construction of mutant protein structures

A total of 81 pathogenic and 24 benign/likely benign TP53 variants, 45 pathogenic and 8 benignMLH1 var-

iants, and 38 pathogenic and 12 benign/likely benign MSH2 missense variants were selected from the

ClinVar database (Table S1). TP53 crystal structure (PDB ID: 2OCJ, resolution 2.05 Å, composed of DNA

binding domain 94–313 residues), MLH1 crystal structure composed of ATPase domain (1–207) and

MutS homologs interaction domain (208–346) (PDB ID: 4P7A, resolution 2.30 Å), andMSH2 crystal structure

composed of the whole MSH2 protein structure (PDB ID: 3THX, resolution 2.7 Å) were used as the tem-

plates to build the mutant structure for each variant.

There were, in total, 44 benign/likely benign variants for TP53, MLH1, and MSH2; 35 variants had a ‘‘three-

star review status’’ (criteria provided, multiple submitters, reviewed by the expert panel), four variants had a

‘‘one-star review status’’ (criteria provided, single submitter), and five variants changed their classifications

to variants of uncertain significance (VUS) or conflicted interpretation (Tables S1A–S1C).3 For all the 164

pathogenic variants, 85 variants had the ‘‘three-star review status’’, 51 variants had a ‘‘two-star review sta-

tus’’ (criteria provided, multiple submitters), and 28 variants had the "one-star review status". Functional

data provided by International Agency for Research on Cancer (IARC), Leiden Open Variation Database

(LOVD), and UniProt showed that most of the variants had a strong positive correlation to the pathogenicity

classification.21–23

RP-MDS for classifying missense variants

We first used the data generated from the known benign and pathogenic variants to determine the cut-off

values between the deleterious and non-deleterious variants. Lognormal distribution was fitted against the

benign and pathogenic distribution (Figure 2). Kolmogorov-Smirnov and Anderson-Darling goodness-of-

fit test accepted lognormal distributions for all genes (Figure 2D).24,25 RP-MDS was able to classify benign

and pathogenic variants in each gene as the benign variant distribution curves differed significantly from

the distribution of the pathogenic variants. We determined the optimal cut-off points as 3.17 (true negative,

TN = 58.3%; true positive, TP = 58.0%) for TP53, 3.38 (TN = 75.0%, TP = 71.1%) for MLH1, and 3.36 (TN =

66.7%, TP = 65.8%) for MSH2. The results for individual variants based on the settled cut-off positions were

obtained (Tables S2 and S3).

DL-RP-MDS for classifying missense variants

The Ramachandran scatter plots (RSP) of benign and pathogenic variants generated by molecular dy-

namics simulation (MDS) were directed into AE (see Figure 1). The optimized hyperparameter configura-

tion for the classifier was a fully connected neural network with one hidden layer of 1024 neurons and

without dropout, together with a latent representation dimension of q = 14 for TP53, q = 8 for MLH1

and q = 20 for MSH2. The values were chosen based on the validation accuracyz95%. These various latent

representation dimensions were employed to characterize the relationship between known benign and

pathogenic variants (Figures S1–S3). Examples of graphical illustrations for the latent dimensions were

shown in Figure 3. Benign variants occupied a localized region and partially overlapped with pathogenic

variants, which represented structural features observed in the benign and pathogenic variants. In contrast,

the unique regions occupied by the pathogenic variants were interpreted as localized distinct protein de-

formities caused by the missense variants. For each variant, probabilities of ‘‘deleterious, D’’ and ‘‘un-

known, U’’ were assigned (Table S2). Variants used as part of the training data were tested by the method

again and scored with high probability (>90%) in their respective classifications. Incorrectly identified var-

iants (false negative, FN; false positive, FP) by DL-RP-MDS with probabilities close to�50% implied that the

protein structure was at the threshold of benign/pathogenic transitions.

Stratified cross-validation results

RP-MDS underwent a four-fold stratified cross-validation test with five repeats using the TP53, MLH1, and

MSH2 variants, and their receiver operating characteristic (ROC) curves were computed. Each model was

fitted against the lognormal distribution and was accepted by the Kolmogorov-Smirnov (K-S) and

Anderson-Darling (A-D) goodness-of-fit test (not shown). The average area under the ROC curve (AUC)

values for the training and testing datasets were 0.64 and 0.62 for TP53, 0.69 and 0.50 for MLH1, 0.72

and 0.54 for MSH2, respectively (Table 1, Figure 4). Although the training datasets performed moderately

well across the three genes, the limited number of benign variants in MLH1 and MSH2 caused a significant
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reduction of accuracy in the testing datasets, as the RP-MDS training data were dependent on the structural

deviation range of benign variants.

DL-RP-MDS also underwent the same four-fold stratified cross-validation test with five repeats. Here, in-

dividual frames of RSP were used for the training and testing datasets, and two different grouping stra-

tegies were utilized. One was grouped by variants, for which DL-RP-MDS treated the 334 RSP for each

variant as one sample; the other was grouped by frames, for which DL-RP-MDS treated the 334 RSP

for each variant as different individual samples. Each grouping strategy undertook randomized permu-

tation before the stratified sampling. The strategy of ‘‘grouped by variants’’ showed that the average

AUC values for the training and testing datasets were 1.00 and 0.74 for TP53, 1.00 and 0.57 for MLH1,

0.98 and 0.54 for MSH2, respectively (Table 1 and Figure S4). Although the training dataset outperformed

RP-MDS, the testing dataset was only marginally better than RP-MDS. This grouping method was used to

have an objective comparison with RP-MDS; thus, the model appeared to be overfitted. Although the

lack of benign variants contributed to the low testing score for DL-RP-MDS, significant improvements

in the testing data were achieved when using the strategy of ‘‘grouped by frames’’ (Figure 4). This

grouping method provided a better description of DL-RP-MDS operation, as it treated each RSP as an

individual. DL-RP-MDS achieved 1.00 and 1.00 for the testing and training data across TP53, MLH1

and MSH2. The results of the four-fold stratified cross-validation demonstrated that DL-RP-MDS models

were not overfitted and performed better than RP-MDS.

Comparing RP-MDS and DL-RP-MDS with 22 in silico methods

Multiple in silico computational methods have been developed based on different principles, such as fa-

milial segregation,26 evolution conservation,27 classical statistics,28 experiment assays,29 and

Figure 2. Goodness of fit test for the missense variants in TP53, MLH1, and MSH2

It showed the distribution of structural deviation for pathogenic and benign variants. (A) TP53; (B) MLH1; (C) MSH2; (D) Summary of the statistical tests. K-S:

Kolmogorov-Smirnov; A-D: Anderson-Darling; Peach: pathogenic variants; cyan: benign variants; red line: lognormal distribution curve for benign variants;

black line: lognormal distribution curve for pathogenic variants.
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combination of different principles.30–40 Missense variants in TP53, MLH1, and MSH2 were used to

compare the performance of DL-RP-MDS and RP-MDS against 22 commonly used in silico methods:

SIFT, SIFT4G, PolyPhen2_HDIV, PolyPhen2_HVAR, LRT, MutationTaster, MutationAssessor, FATHMM,

PROVEAN, MetaSVM, MetaLR, MetaRNN, M_CAP, REVEL, PrimateAI, DEOGEN2, BayesDel_AddAF,

BayesDel_noAF, ClinPred, LIST_S2, FATHMM_MKL_coding, and FATHMM_XF_Coding through utilizing

dbNSFP (Tables 2 and S3).41 We quantified each method by determining the sensitivity, which was calcu-

lated by the number of TP predictions divided by all the number of pathogenic samples, and the

specificity, which was calculated by the number of TN predictions divided by all the number of benign

samples. For the pathogenic variants, 21 in silico methods except PrimateAI had the sensitivity between

78 and 100%; BayesDel_addAF, FATHMM, M_CAP, REVEL, and BayesDel_addAF reached 100%, and

PrimateAI had 25%, the lowest score among all 22 in silico methods. In comparison, DL-RP-MDS reached

95% sensitivity; for the benign variants, only two (PrimateAI, PolyPhen2_HVAR) out of the 22 in silico

methods had specificity >70%, in which PrimateAI reached 93.2%, the highest among all 22 in silico

methods specificity, the remaining 20 in silico methods showed specificity in the range of 0–70%. In com-

parison, DL-RP-MDS achieved 100% specificity, the highest over all the in silico methods.

The overall performance was summarized in Table 2. Most of the widely used in silicomethods showed high

sensitivity but at the cost of a low specificity resulting in high false-positive rates. DL-RP-MDS scored the

highest among all the in silico methods tested, with a sensitivity of 0.95 and specificity of 1.00. For example,

the commonly used in silico methods of SIFT, PolyPhen2, and MutationTaster achieved >0.73 in sensitivity

but <0.42 in specificity, resulting in BAs of 0.65, 0.56, and 0.48, respectively (Figure 5). DL-RP-MDS obtained

balance accuracies of 0.98, overperformed the 0.84 by ClinPred andMeta RNN, and 0.76 by PROVEAN. The

results showed that DL-RP-MDS outperformed most of the existing in silico methods, provided that

enough benign variants were available as the training data.

Figure 3. Examples of the latent dimensions generated by the autoencoder

DL-RP-MDS reduced the complexity of Ramachandran scatterplots but retained the crucial information. The combination of the unique information in each

dimension was used as the classification criteria. Blue: Benign variants; Red: Pathogenic variants.
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DISCUSSION

Computational approaches are promising for genetic variant classification as their high-throughput capac-

ity allows the characterization of massive genetic variation data. Our approach for missense variant classi-

fication is based on the impact of the variants on protein structure stability. Our current study integrated

RP-MDS and DL-RP-MDS into a single system for missense variant classification. In RP-MDS, MDS charac-

terizes molecular conformation by allowing time-dependent evolution based on atomistic interactions. The

information of 4 and J torsional angle from MDS trajectories is extracted to provide an energy land-

scape.42–44 Measurement of 4 and J torsional angle allows distinguishing energy landscapes between

benign and pathogenic variants.

In contrast to the traditional view of the RSP, where the emphasis was on the residues in the disallowed re-

gion, RP-MDS directly measures the dynamical structure changes by RSP and determines the deleterious-

ness of the variants based on the average structure dynamics reflected in the last 10 ns of MDS. Deleterious

variants were thought to have deleterious effects on the surrounding environment such that the averaging

dynamics of the protein (i.e., converting RSP into Ramachandran density plot, RDP) may reveal the effects of

the variant residue in the proteins. Thus, the variants with significant differences can be identified as ‘‘dele-

terious’’. However, RDP can dampen the scrupulous details of structural change but mainly conserve sig-

nificant information. DL-RP-MDS used RSP as input to conserve the vast information of the residue and

backbones. It provides a high capability to distinguish energy landscapes between deleterious and benign

variants. The first part of the DL approach, AE, nonlinearly compresses the individual RSP frame into the

latent space;45 and the second part, the neural network classifier, performs the classification based on

Figure 4. Receiver operating characteristic (ROC) curves for DL-RP-MDS and RP-MDS

Each ROC curve was the average of 20 stratified cross-validation models. For DL-RP-MDS, variants were grouped by frames. The overlapped testing dataset

and training dataset ROC illustrated the equal area under the curve (AUC) for TP53 (left), MLH1 (center), and MSH2 (right). For RP-MDS, the AUC of the

testing and training datasets was comparable for TP53, lower for MLH1, and higher for MSH2. Red solid line: DL-RP-MDS training dataset model; Red dotted

line: DL-RP-MDS testing dataset model; Black solid line: RP-MDS training dataset model; Black dotted line: RP-MDS testing dataset model.

Table 1. The average of four-fold stratified sampling with five repeats

Gene

AUC

RP-MDS

DL-RP-MDS

Variants Frames

Training

TP53 0.64 1.00 1.00

MLH1 0.69 1.00 1.00

MSH2 0.72 0.98 1.00

Testing

TP53 0.62 0.74 1.00

MLH1 0.50 0.57 1.00

MSH2 0.54 0.54 1.00
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the latent space to provide a probability for benign and deleterious variants. Another benefit of DL-RP-

MDS is that it provides a continuous value (between 0 and 1) for high-confident variant classification instead

of an arbitrarily defined cut-off for binary classification. DL-RP-MDS substantially improves the accuracy of

RP-MDS as reflected by its differentiation between benign and pathogenic variants at AUC of nearly 100%

when each gene was evaluated individually. DL-RP-MDS substantially overcomes the problem of overpre-

diction of deleterious by the current in silico methods.46,47

TP53, MLH1, and MSH2 are distinct cancer genes48 and were used as examples to test DL-RP-MDS. TP53

is known as the ‘‘guardian of the genome’’. Mutations in its DNA binding domain can affect the expres-

sion of a large number of genes causing undesirable functional change;49 MLH1 plays important roles in

safeguarding the integrity of genomic DNA through its N-terminal ATPase domain and its MutS homo-

log interaction domain;50 MSH2 forms a heterodimer with MSH6 to make the human MutSa mismatch

repair complex involved in transcription repair, homologous recombination, and base excision repair.51

The results from our study of the missense variants of these three genes demonstrate that the classifica-

tion of missense variants by DL-RP-MDS needs to be gene-specific. This is different from the principles

used by the 22 in silico methods tested in this study as they assume that the same principles apply to all

genes. We consider that such an assumption ignores the structural differences between different genes,

contributing to their lower accuracy. For example, SIFT and PolyPhen-2 use evolution conservation for

variant classification. However, they are not be suitable to classify the missense variants in BRCA1 and

BRCA2, as the pathogenic variants in BRCA1 and BRCA2 were mostly originated in recent human history

rather than evolution conservation from other species.52 On the contrary, DL-RP-MDS uses protein

Table 2. Comparison of DL-RP-MDS with 22 in silico methods

Methods

TP53 MLH1 MSH2 Average

Sen* Specy BAz Sen* Specy BAz Sen* Specy BAz Sen* Specy BAz

DL-RP-MDS 0.85 1.00 0.93 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.98

ClinPred 1.00 0.75 0.88 1.00 0.75 0.88 0.97 0.58 0.78 0.99 0.69 0.84

MetaRNN 1.00 0.71 0.85 0.98 0.63 0.80 0.97 0.75 0.86 0.98 0.69 0.84

PROVEAN 0.96 0.88 0.92 0.93 0.38 0.65 0.92 0.50 0.71 0.94 0.58 0.76

SIFT 1.00 0.71 0.85 0.93 0.50 0.72 0.89 0.50 0.70 0.94 0.57 0.76

PolyPhen2_HVAR 0.88 0.88 0.88 0.71 0.63 0.67 0.76 0.67 0.71 0.78 0.72 0.75

BayesDel_addAF 1.00 0.54 0.77 1.00 0.38 0.69 1.00 0.58 0.79 1.00 0.50 0.75

SIFT4G 0.96 0.75 0.86 0.87 0.50 0.68 0.89 0.50 0.70 0.91 0.58 0.75

MutationAssessor 0.99 0.83 0.91 0.89 0.25 0.57 1.00 0.33 0.67 0.96 0.47 0.72

fathmm_XF_coding 0.96 0.75 0.86 0.96 0.13 0.54 0.97 0.42 0.70 0.96 0.43 0.70

PolyPhen2_HDIV 0.88 0.83 0.85 0.84 0.25 0.55 0.79 0.50 0.64 0.84 0.53 0.68

REVEL 1.00 0.54 0.77 1.00 0.25 0.63 1.00 0.25 0.63 1.00 0.35 0.67

LRT 0.94 0.75 0.84 1.00 0.25 0.63 0.92 0.17 0.54 0.95 0.39 0.67

MetaLR 1.00 0.00 0.50 0.89 0.50 0.69 1.00 0.58 0.79 0.96 0.36 0.66

RP-MDS 0.58 0.58 0.58 0.69 0.75 0.72 0.66 0.67 0.66 0.64 0.67 0.65

DEOGEN2 1.00 0.17 0.58 0.96 0.25 0.60 1.00 0.50 0.75 0.99 0.31 0.65

LIST_S2 0.88 0.63 0.75 0.98 0.00 0.49 0.97 0.42 0.70 0.94 0.35 0.64

MetaSVM 1.00 0.00 0.50 0.87 0.50 0.68 0.97 0.50 0.74 0.95 0.33 0.64

BayesDel_noAF 1.00 0.42 0.71 1.00 0.25 0.63 0.97 0.08 0.53 0.99 0.25 0.62

fathmm_MKL_coding 0.96 0.54 0.75 0.98 0.00 0.49 1.00 0.08 0.54 0.98 0.21 0.59

PrimateAI 0.12 1.00 0.56 0.27 0.88 0.57 0.37 0.92 0.64 0.25 0.93 0.59

MutationTaster 0.83 0.54 0.68 0.93 0.00 0.47 0.92 0.25 0.59 0.89 0.26 0.58

FATHMM 1.00 0.00 0.50 1.00 0.13 0.56 1.00 0.00 0.50 1.00 0.04 0.52

M_CAP 1.00 0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50

*Sen = Sensitivity; ySpec = Specificity; zBA = Balance Accuracy.
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structure as the reference to identify abnormalities caused by missense variants by following the thermo-

dynamics changes to differentiate benign and deleterious variants. Furthermore, DL-RP-MDS can

tolerate the altered residues and allocate deleterious probability with high BA values. Our study indi-

cates that structural change is a valuable property for variant classification.

In summary, DL-RP-MDS provides a highly accurate tool for missense variant classification. It is

readily applicable to classify the missense variants of unknown significance and unclassified missense

variants.

Limitations of the study

Several limitations of DL-RP-MDS suggest future studies to advance the prediction of missense variants: 1)

The limited number of benign variants may skew the variant test toward more deleterious identification,

even in the presence of SMOTE. 2) Not all deleterious variants change protein structure. Therefore, DL-

RP-MDS may not be able to characterize these variants. 3) Interpretation of DL results can be elusive

because of the ‘‘black box’’ issue discussed in ref.53, although DL-RP-MDS avoids ‘‘black box’’ interpreta-

tion as phi-psi angle based on protein backbone. 4) DL parameters are subject to fine-tuning. Although

layers and dimensions were tuned specifically for TP53, MLH1, andMSH2, these parameters can be protein

specific. The accuracy of the prediction may be subject to variants classified by different resources (i.e.,

different databases) under distinct classification criteria. 5) DL-RP-MDS uses MDS to observe structural

changes within the protein, which does not account for external molecules and therefore does not provide

information or properties such as LOF or gain of function. Furthermore, only fragments of the protein do-

mains were experimentally purified and crystallized, making theMD simulations and the analyses limited to

the structures available in the PDB database.54

Figure 5. Comparison of balance accuracy of DL-RP-MDS, RP-MDS, and 22 in silico methods

DL-RP-MDS scored the highest among all methods. The maroon to yellow colors represents the scores from high to low.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact: Chon Lok Lei (chonloklei@um.edu.mo).

Material availability

This study did not generate new unique reagents.

Data and code availability

d The DL-RP-MDS code is available in: https://doi.org/10.5281/zenodo.7435215.

d The DL-RP-MDS website is available in: https://genemutation.fhs.um.edu.mo/DL-RP-MDS/.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study did not use any experimental model.

METHOD DETAILS

Sources of missense benign and pathogenic variants

From the ClinVar database, we identified 81 known pathogenic and 24 known benign/likely benign

missense variants located within the TP53 DNA binding domain, 45 known pathogenic and 8 known benign

missense variants within the MLH1 N-terminus, 38 pathogenic and 12 benign missense variants in MSH2

whole structure (Table S1).3

MDS

TP53 DNA binding domain structure (PDB ID: 2OCJ, 94–313 residues, 2.05 Å resolution),61 MLH1

N-terminus (PDB ID: 4P7A, 0–348 residues, 2.30 Å resolution)),50 and MSH2 structure (PDB ID: 3THX,

1–934 residues, 2.70 Å resolution)62 were used as the templates to construct the mutant structures for

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python/3.2.7 Python https://www.python.org/

numpy/1.19.5 Harris et al.,55 https://numpy.org/

scipy/1.6.0 Virtanen et al.,56 https://www.scipy.org/

Pandas/1.2.1 Pandas https://pandas.pydata.org/

Joblib/1.0.0 Joblib https://joblib.readthedocs.io/en/latest/

Sckit-learn/1.0.0 Pedregosa et al.,57 https://scikit-learn.org/stable/

Tensorflow/2.4.0 Dillon et al.,58 https://www.tensorflow.org/

Tensoflow-addons/0/13/0 Dillon et al.,58 https://www.tensorflow.org/addons/overview

Keras-tuner/1.0.2 Keras tuner https://keras.io/keras_tuner/

Imbalanced-learn/0/.8.1 Lemaı̂tre et al.,59 https://imbalanced-learn.org/stable/

Seaborn/0.11.1 Waskom60 https://seaborn.pydata.org/

DL-RP-MDS online platform https://genemutation.fhs.um.

edu.mo/DL-RP-MDS/

DL-RP-MDS code https://doi.org/10.5281/zenodo.7435215
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each of the 207 missense variants following the procedure described in ref.6. Briefly, the software

MODELLER in the Chimera package was used to build the missing atoms, and the Rotamer in the Chimera

package was used to replace the template amino acid residue with the residue coded by the missense

variant from the Dunbrack rotamer library.63,64 The mutant structure was used as the starting configuration

for MD simulations for all missense variants using GROMACS (version 2020).65 AMBER14 force field was

chosen to model the protein complex and the Mg ions.66 The protein structure was situated in a 10 3

10 3 10 nm simulation box for MLH1 and TP53, whereas MSH2 was situated in a box with the boundary

1 nm away from the protein. Each system was solvated with TIP3P water and neutralized with NA+ or Cl�

ions. Including the protein, TIP3P water, NA+, and Cl� ions, each simulation system holds approximately

�99,000 atoms for MLH1 and TP53, and �200,000 atoms for MSH2. Steepest descent algorithm was

applied to the system before 1 ns equilibration run at 298 K and 1 bar in the NPT ensemble using Berendsen

thermostat and barostat. The system was set at 298 K and 1 bar in the NPT ensemble by using a V-rescale

thermostat and Parrinello-Rahman barostat during the 40 ns production run.67 The Verlet velocity algorithm

was employed with a time step of 2 fs. Particle Mesh Ewald (PME) method was used to treat the long-range

electrostatic interactions with the cut-off distance set at 1.0 nm. Hydrogen bonds were constrained at equi-

librium lengths by using the LINC algorithm. The trajectory frame of MD was saved every 30 ps.68

Ramachandran plot

RSP for each variant was generated from the MD simulation trajectory following the procedure.6 The last

10 ns of the production run were used for RP-MDS and DL-RP-MDS analyses. For RP-MDS, the torsional

angle (4 and J) was retained for each residue in the protein and transformed into a RDP by using Kernel

density estimation with a grid dimension of 32 3 32. The "training data" was calculated by averaging each

grid point for wildtype (WT) and benign variants. Pathogenic variants followed the same procedure, and

each grid point of the respective RDP was compared with the training data. The grid point was marked

as significant structural deviation if it was beyond the standard deviation of the training data.

The optimal cut-off points for determining benign and pathogenic variants were determined by shifting the

cut-off point with a bin size of 0.01 in the range of 2.7–4.0. Each variant prediction was assigned as TP if the

model predicted the variant as deleterious and the database classified as pathogenic, or as TN if themodel

predicted as "unknown" and the database classified as benign, or as FP if the model predicted as delete-

rious but the database classified as benign, or FN if the model predicted as "unknown" but the database

classified as pathogenic. The sum of TP, TN, FP, and FN variants was documented for each bin. The over-

lapped percentage of TP and TN were assumed to be the optimal cut-off point to classify the variants as

"deleterious" or "unknown".

Machine learning

The process of the DL-RP-MDS is presented in Figure 1. The initial process and system setup followed our

previous publication.6 Here, we included DL in the analysis stage for examining individual RSP. The

following sections showed the details of AE and the multi-label classifier.

Nonlinear dimensionality reduction: Auto-encoder (AE)

An AE is a feedforward, non-recurrent neural network, which consists of the encoder and the decoder.11,12

E : Rp/Rq is an operator for the encoder and D : Rq/Rp for the decoder, each with M hidden layers,

where p is the input/output dimension and q is the latent dimension. The encoder stage of the AE takes

the input X ˛Rp and maps it to the latent representation H˛Rq:

H = EðXÞ = WM + 1 + ðsM +WMÞ+/+ðs1 +W1ÞðXÞ (Equation 1)

whereWM is the weight matrix including the bias vector between themth and the (m + 1)th layers, sm : R/ R

is the activation function for each ’node’ in the mth layer, and ◦ denotes operator composition. The decoder

stage of the AE maps the latent representation H back to the reconstructed X 0 ˛Rp:

X 0 = DðHÞ = W 0
M + 1 +

�
s0
M +W 0

M

�
+/+

�
s0
1 +W 0

1

�ðHÞ (Equation 2)

where we decided to use s0m = sm when building the AE.

We used a time-one-lagged AE to find low-dimensional representations of the MD simulations, which is

shown to outperform those found by other ’conventional’ methods, such as PCA.45 We refer to it as an
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AE in this study. Figure 2 shows an example of the latent representation for MD simulations. The AE was

trained to minimize a reconstruction error. We used the mean squared error as the loss function:

LðX ;X�Þ =
1

N
kX� � DðεðXÞÞk22 (Equation 3)

where X is the input (standardized) atomic configuration (4 andJ angles) at time t to be encoded, X* is the

torsional configuration of the trained data at time t + 1,45 k$k2 denotes theL2 norm andN input data points.

The weights and biases were initialized randomly using the Glorot uniform initialization method, and the

optimization was performed using Adam’s algorithm with a learning rate of 0.001.69 For the AE architecture

and design, we followed the procedure in ref.45; we used the Leaky-Rectified Linear Unit (ReLU) as the acti-

vation function s and implements two hidden layers (M = 2) with 1,000 nodes between the input and latent

layers and dropout rate of 0.1.

Multi-label classification: Multi-layer neural network classifier

After encoding the complex torsional configurations from the MD simulations into the latent representa-

tion using the time-lagged AE, we performed classification for the data as deleterious or undefined func-

tion. We employed a fully connected neural network model N : Rq/½0; 1�2 with M00 hidden layers as the

multi-label classification model, which can be expressed as

L = NðHÞ =
�
s00
M00 + 1 +W 00

M00 +1

�
+
�
s00
M00 +W 00

M00
�
+/+

�
s00
1 +W 00

1

�ðHÞ (Equation 4)

where the model took the standardized latent representation from the AE as the inputs and mapped the

inputs to two labels representing the probability of the variant being a deleterious or undefined function.

We used the Leaky-ReLU as the activation function for the hidden layers (sm form% ‘‘M’’) and the sigmoid

activation function for the output (sM’’+1). As the data for the classification were imbalanced due to the

smaller number of Benign variants than that of pathogenic variants, SMOTE was employed to enhance

Benign variants data.15 The neural network classifier was trained as described for the AE. We used the

cross-entropy as the loss function:

L00ðH; L�Þ = �
X2

i = 1

L�i log
�
NðHÞi

�
(Equation 5)

where L� is ground-truth labels. The weights and biases were initialized randomly using the Glorot uniform

initialization method, and the optimization was performed using Adam’s algorithm with a learning rate of

0.001. Bayesian optimizations were performed for hyperparameter tuning for the neural network classifier

to determine the best architecture, combined with a grid search for the number of latent dimensions.

QUANTIFICATION AND STATISTICAL ANALYSIS

F2 score validation and accuracy test

We use the F2 score of the validation dataset as the objective function of the hyperparameter tuning:

F2 =
�
1 + b2

� precision3 recall

b2 3precision+ recall
(Equation 6)

where precision = TP=ðTP +FPÞ and recall = TP=ðTP +FNÞ and b = 2. The computed accuracy of the pre-

dictions for comparison was calculated by

accuracy =
TP +TN

TP + FP +TN+ FN
(Equation 7)

To obtain the final probability of a variant as a deleterious or undefined function, we took the mean value

of the classification probability using the full-time series of the MD simulation results. The final classifi-

cation of the variant was based on the highest probability of the prediction. For example, if

Pðvariant is deleterious;DÞ = 0:7 and Pðvariant is undefined;UÞ = 0:3; the variant was labelled as delete-

rious, and vice versa.

Statistical analysis and cross-validation test

A four-fold stratified cross-validation test with five repeats was performed to assess the sensitivity and spec-

ificity of RP-MDS and DL-RP-MDS for all datasets.70 In brief, the benign and pathogenic Ramachandran

plots were randomly permuted and divided into four groups. In each run, one of the groups was selected

ll
OPEN ACCESS

iScience 26, 106122, March 17, 2023 15

iScience
Article



as the testing dataset and the remained groups were used as the training dataset for model training. A total

of 20 models were created for RP-MDS and DL-RP-MDS, and the performances were represented by the

ROC curve and AUC. The ROC curve for RP-MDS was generated by shifting the cut-off with an equal bin

size of 0.01, and the ROC curve for DL-RP-MDS was calculated by using python library Scikit-learn.

Further, we used the balanced accuracy (BA) to calculate the average true negative rate (TNR) and true pos-

itive rate (TPR) of the variants classified by the model:

balance accuracy =
TPR +TNR

2
(Equation 8)

The TPR and TNR values for RP-MDS were calculated based on the optimal cut-off value, and TPR and TNR

values for DL-RP-MDS were calculated based on the results generated from the model.
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