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a b s t r a c t 

Background and Objective: Models of the cardiomyocyte action potential have contributed immensely to 

the understanding of heart function, pathophysiology, and the origin of heart rhythm disturbances. How- 

ever, action potential models are highly nonlinear, making them difficult to parameterise and limiting to 

describing ‘average cell’ dynamics, when cell-specific models would be ideal to uncover inter-cell vari- 

ability but are too experimentally challenging to be achieved. Here, we focus on automatically designing 

experimental protocols that allow us to better identify cell-specific maximum conductance values for 

each major current type. 

Methods and Results: We developed an approach that applies optimal experimental designs to patch- 

clamp experiments, including both voltage-clamp and current-clamp experiments. We assessed the mod- 

els calibrated to these new optimal designs by comparing them to the models calibrated to some of the 

commonly used designs in the literature. We showed that optimal designs are not only overall shorter 

in duration but also able to perform better than many of the existing experiment designs in terms of 

identifying model parameters and hence model predictive power. 

Conclusions: For cardiac cellular electrophysiology, this approach will allow researchers to define their 

hypothesis of the dynamics of the system and automatically design experimental protocols that will result 

in theoretically optimal designs. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Cardiac cellular electrophysiology is the study of how cells ma- 

ipulate ionic concentrations and membrane voltage to initiate and 

ynchronise heartbeats. Having demonstrated their usefulness in 

undamental research, quantitative models of the action potential 

AP) are increasingly being used [1] in safety-critical applications 

2,3] such as optimising patient treatments [4,5] or assessing drug 

afety [6] . These models contain several parameters, which may 

epresent chemical properties such as binding rates, but also pa- 

ient and even cell-specific properties such as ion current conduc- 

ances (which are determined by gene expression levels). In many 

ases such parameters are not measured directly, but inferred in- 
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irectly from experimental recordings of membrane potential or 

ransmembrane current. To create accurate models, we need to en- 

ure the experiments used in their creation contain sufficient in- 

ormation on all parameters we need to infer. However, the exper- 

ments used in this process have not usually been designed with 

odel calibration in mind, and as a result some parameters may 

e poorly constrained by the available data [7,8] . Optimal experi- 

ental design (OED) is a method of designing experiments which 

ses an objective approach to elicit data containing “optimal in- 

ormation” for model calibration [9–12] . It is extremely popular in 

hysical sciences such as geosciences [13,14] , mechanical engineer- 

ng [15,16] , chemical engineering [17,18] , etc. In this study, we ap- 

ly the techniques of OED to cardiac cellular electrophysiology to 

xpedite the development of AP models suitable for both basic re- 

earch and safety-critical applications. 

The electrophysiological properties of many types of isolated 

ells can be studied and examined via patch-clamp experiments 

19] in which the experimenter either controls (‘clamps’) the cell’s 
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embrane potential and measures the resulting transmembrane 

urrent (voltage-clamp mode), or controls the current while mea- 

uring potential (current-clamp mode). In either mode, a pre- 

etermined waveform (i.e. a sequence of voltages or currents) is 

pplied, which we shall refer to as the experimental protocol . OED 

s a methodology of designing protocols based on the intuition that 

 model parameter can only be estimated from a measured model 

utput (e.g. a current or voltage trace) if that output is strongly 

ensitive to the parameter value during the experiment. In short, it 

roduces protocols that maximise (in some exact sense to be cho- 

en by the experimenter) the model output’s sensitivity to all pa- 

ameters of interest. 

We apply an OED strategy to design experimental protocols that 

llow us to better identify cell-specific maximum conductance val- 

es for the major current types in mathematical cardiac myocyte 

odels. Using simulation results from a controllable, understand- 

ble cellular system, we show that OED can successfully be applied 

o both voltage-clamp and current-clamp experiments to obtain 

ell-specific models. Moreover, the results demonstrate how OED 

rotocols perform better than many of the existing experiments in 

he literature, in terms of reducing uncertainty in model parame- 

ers and its theoretical predictive power. This study provides a road 

ap for researchers in cardiac cellular electrophysiology to auto- 

atically design theoretically-optimal experimental protocols. 

. Methods 

In the design of experiments, the results of OED are exper- 

mental designs that are optimal with respect to some statisti- 

al criteria—optimal design measures . Formally, we consider a (con- 

rolled) nonlinear differential equation model of the form 

d x 

d t 
= f 

(
x , u 

(
d 

)
, θ

)
, (1) 

 = h (x , u (d) , θ) , (2) 

here x is the vector of model states, u is the vector of system in-

uts, θ is the vector of model parameters. f and h are the systems 

f equations, where f describes the dynamical equations, and h 

aps the solutions of the dynamical equations to the vector of ob- 

ervables y, i.e. the model outputs that we compare with data. We 

ssume that the system input u can be parameterised with d, i.e. 
ig. 1. A schematic of optimal experimental design for patch-clamp experiments. Initia

an commonly be found in the literature or perhaps are ‘intuitive’ choices of the desi

athematical models, leading to a wide posterior for the model parameters θ (shown 

ptimal experimental designs with the mathematical model M under a certain statistica

esign inputs ˆ d which elicit informative data for calibration, and lead to narrower parame

2 
is the vector of parameters that controls the experimental con- 

itions. For example, if u is an applied voltage-clamp protocol, d

ould be the voltages and durations of its steps; if u is an applied

urrent stimulus, d could be the durations between each stimulus, 

s described in details in the next sections. The optimisation of the 

xperimental design procedure is then defined as 

ˆ 
 = argmin d �(d) , (3) 

here the function � represents the optimal design measure to be 

inimised. 

All optimal design measures discussed in this paper assume 

he model calibration process to be least-square estimation, maxi- 

um likelihood estimation, or posterior estimation; if one consid- 

rs a different calibration process, such as bounded-error param- 

ter estimation (also known as guaranteed parameter estimation) 

r approximate Bayesian computation (ABC), biases may be intro- 

uced, and a different set of design measures should be used [17] . 

ll methods are implicitly conditional on the chosen set of model 

quations, i.e. they are only optimal for the models used during 

he design; this is a general limitation of model-based OED. 

.1. Action potential models for OED 

We consider cardiac cellular electrophysiology models of APs 

nder either a voltage-clamp or a current-clamp experiment, and 

e aim to optimise either the voltage-clamp or the current-clamp 

rotocol for conductance identification. In practise, we design ex- 

eriments and perform the fitting to data with a proposed model 

hich would be our current best representation of reality. A 

chematic overview of the method is given in Fig. 1 . 

esigning experiments with a single model 

Here, we first use a widely-used adult ventricular (epicardial) 

P model by O’Hara et al. [20] as a ‘proposed model’. Under the 

oltage-clamp configuration, the observed current I obs can be ex- 

ressed as 

 obs (t) = 

∑ 

j 

g j · x j (V m 

, t) , (4) 

here g j is the maximum conductance or permeability and x j (V ) 

s some nonlinear function of the voltage V m 

for the current of type 
l designs (left, u (d) ) of the voltage-clamp and current-clamp experiments, which 

gn inputs ( d), elicit uninformative data/observables y(u ) for calibrating complex 

for two parameters but the principle applies for higher numbers of parameters). 

l criterion �M derive optimised designs (right, u ( ̂  d ) ) with non-intuitive choices of 

ter posteriors. 
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1 That is, for N o model outputs and N t time points, i = 1 , 2 , . . . , N o , N o + 1 , N o + 

2 , . . . , N o × N t . 
j, and we consider the major currents only ( Eq. (6) ). These non-

inear functions x j (V ) are the product of the ‘kinetics’ (describing 

he voltage-dependent opening and closing of ion channels in re- 

ponse to changes in membrane voltage) and the ‘driving term’ of 

he currents, either the Ohmic (membrane potential minus reversal 

otential) term or the Goldman-Hodgkin-Katz flux equation. 

For our voltage-clamp experimental designs, the output of in- 

erest ( y in Eq. (2) ) is the observed current I obs , and the vector

f system inputs u describes the applied voltage-clamp protocol 

 m 

(t) . 

Alternatively, for current-clamp experiments, the observed 

embrane voltage V m 

follows 

 V m 

d t 
= − 1 

C m 

( I obs ( t ) + I stim 

( t ) ) , (5) 

here I obs (t) is the same as Eq. (4) . In this case, the membrane

oltage V m 

is the output of interest ( y in Eq. (2) ), and the vector

f system inputs u describes the externally-applied current-clamp 

rotocol, i.e. the stimulus current I stim 

(t) . 

We assume that the x j kinetics equations and their parameters 

re known (and correct). We are interested in finding all g j , which 

etermine the magnitude of the currents when the channels are 

ully open, therefore we have 

= { g Na , g CaL , g Kr , g Ks , g to , g NaCa , g K1 , g NaK } (6)

o be inferred, which are the maximum conductance or perme- 

bility of the fast sodium current, the L-type calcium current, 

he rapid-delayed rectifier potassium current, the slow-delayed 

ectifier potassium current, the transient potassium current, the 

odium-calcium exchanger current, the inward rectifier potassium 

urrent, and the sodium-potassium pump current, respectively. We 

ote that this ignores some smaller background currents in the 

odel. 

Simulations were run using Myokit [21] , with tolerance settings 

or the CVODE solver [22] set to abs_tol = 10 −8 and rel_tol = 

0 −10 . 

esigning experiments with an averaged measure over models 

Each OED is optimal for the model used to perform the design. 

owever, we may want to obtain a design that is optimal for a 

ange of biological assumptions instead of focusing on one partic- 

lar model, so that the same data can be used to study multiple 

imilar models. Therefore, we also consider using multiple models 

or calculating the cost function; instead of using only one model 

o optimise the experiment while the true data generating process 

ould potentially be more similar to another model. That is, if we 

ave N M 

proposed models, then each model output I obs ,M 

(for volt- 

ge clamp) or V m ,M 

(for current clamp) is used to calculate an op- 

imal design measure �M 

, and we optimise the experimental pro- 

ocol parameters using 

ˆ 
 = argmin d E M 

(
�M 

(d) 
)
. (7) 

t minimises the mean of the measures �M 

calculated indepen- 

ently for each of the N M 

proposed models. Here we use five adult 

entricular (epicardial) AP models to represent an averaged be- 

aviour: O’Hara et al. [20] , ten Tusscher et al. [23] , Fink et al. [24] ,

hang et al. [25] , and Tomek et al. [26] . Note that the averaged

easure (over models) is used only for the designing the experi- 

ents, i.e. obtaining ˆ d , and only one model will be used at a time

uring predictions. 

.2. Experiments to be optimised: Two modes of experiments 

We design the experiments by varying the system input u (d) . 

s described in the model section, we could measure the system 

ith two modes: voltage clamp and current clamp. 
3 
arameterising voltage-clamp experiment designs 

The voltage-clamp protocol V is the system input u (d) , and we 

hoose it to be a piecewise function defined as 

 (d) = V (t) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

V 1 , 0 ≤ t < T 1 
V 2 , T 1 ≤ t < T 2 
. . . 

. . . 
V N , T N−1 ≤ t < T N . 

(8) 

he vector of parameters that defines the voltage-clamp protocol 

s 

 = { V 1 , T 1 , V 2 , T 2 , . . . , V N , T N } (9)

or a N-step protocol; equivalently we can define �T i = T i − T i −1 

ith T 0 = 0 , then we obtain 

 = { V 1 , �T 1 , V 2 , �T 2 , . . . , V N , �T N } . (10)

n order to ensure the resulting voltage-clamp protocol V is fea- 

ible to be run experimentally, we constrain the protocol to have 

 i ∈ [ −120 , 60] mV and �T i ∈ [50 , 20 0 0] ms for all i , which defines

he protocol parameter space. We choose N to be 20, giving a max- 

mum protocol duration of 40 s . We applied both the local sensitiv- 

ty analysis (LSA) and global sensitivity analysis (GSA) designs for 

his experimental setting. 

In theory, the voltage-clamp protocol can be replaced with any 

rbitrary function, e.g. a sum of sinusoidal functions [27] , as long 

s it can be parameterised with some vector of parameters d. How- 

ver, the benefit of choosing such a piecewise step function is that 

t can be directly applied in any patch-clamp system, including 

ome of the high-throughput automated patch-clamp systems such 

s the SyncroPatch from Nanion Technologies [28,29] . 

arameterising current-clamp experiment designs 

In the current-clamp mode, the stimulus current I stim 

is the sys- 

em input u (d) . Partly inspired by Groenendaal et al. [30] , who

andomly applied stimulus pulses to create an informative non- 

niform protocol, here we optimise when to apply stimulus pulses. 

e parameterised the current-clamp protocol as follows: the stim- 

lus current with an amplitude I stim 

and duration T stim 

is applied at 

imes T 1 , T 2 , . . . , T N (and is otherwise zero), where T i +1 > iT stim 

+ T i .

he values of I stim 

and T stim 

are chosen to be those given in the 

riginal publication of each model. Similar to the voltage-clamp 

rotocol parameterisation, equivalently we can define �T i = T i +1 −
T stim 

− T i , giving 

 = { �T 1 , �T 2 , . . . , �T N } . (11) 

We further constrain �T i ∈ [10 0 , 20 0 0] ms , ∀ i , to make the de-

igned experiments practically usable. We applied only the LSA 

esigns for this experimental setting; to apply GSA designs for 

urrent-clamp experiments, we would need to first explore the 

oundaries (not necessarily being a hypercube) of the parameter 

pace that generate APs. 

.3. OED design measures 

ocal sensitivity analysis (LSA)-based designs 

The sensitivity matrix based on LSA, S L (d | θ = 

ˆ θ) , is defined as

 

S L ) ij = 

∂y i 
∂θ j 

∣∣∣∣
θ= ̂ θ

. (12) 

ere the subscript i (row) in y i runs through all model outputs in 

and all sampled time points t k 
1 , and the subscript j (column) θ j 
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Table 1 

Local design criteria for OED. Here we have assumed the parameter covari- 

ance matrix C θ for some given model parameters θ can be approximated as 

σ−2 [ S T L S L ] 
−1 , where σ−2 is dropped from the design criteria (cost functions) as 

it is assumed to be constant. E ∗ is the modified E criterion. 

Local design criteria Cost functions 

A-optimal design �A = trace ([ S T L S L ] 
−1 ) 

D-optimal design �D = det ([ S T L S L ] 
−1 ) 

E ∗-optimal design �E ∗ = λmax ([ S T L S L ] 
−1 ) /λmin ([ S T L S L ] 

−1 ) 

Table 2 

Global design criteria for OED based on a generalisation of the local design cri- 

teria in Table 1 using a GSA method. 

GSA-based design criteria Cost functions 

A-optimal design �GSA 
A 

= trace ([ S T G S G ] 
−1 ) 

D-optimal design �GSA 
D 

= det ([ S T G S G ] 
−1 ) 

E ∗-optimal design �GSA 
E ∗ = λmax ([ S T G S G ] 

−1 ) /λmin ([ S T G S G ] 
−1 ) 

m
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S
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oes over all model parameters in θ. The Fisher information matrix 

 FIM ) is given by 

IM (θ) = S T L �
−1 S L , (13) 

here � is the covariance matrix of the measurement data (noise). 

ere we assume that data are from a single output (a single ob- 

erved time series trace) with independent and identically dis- 

ributed (i.i.d.) zero mean and σ 2 variance Gaussian noise through 

ime such that � = σ 2 I with σ constant and I the identity matrix. 

Many local design criteria are based on the parameter 

co)variance matrix defined as 

 θ = E 

[
(θ − E [ θ])(θ − E [ θ]) T 

]
≥ FIM (θ) −1 , (14) 

here E [ ·] denotes the expected value. This describes the covari- 

nce of the estimates of a fixed true parameter set 2 . For any un-

iased estimator, where the expected value is equal to the true 

alue of the parameter set, a lower bound for the variance is given 

y the inverse of the FIM (the inequality in Eq. (14) ), known as 

he Cramér-Rao bound [31] . Therefore, to evaluate the local de- 

ign criteria based on the covariance matrix, we use the Cramér- 

ao bound and calculate FIM (θ) −1 instead [18,31] . In fact, equality 

ith the Cramér-Rao bound would be achieved as K (number of 

bservations) approaches infinity 

lim 

→∞ 

C θ = FIM (θ) −1 . (15) 

or proof of Eq. (15) see, for example, Pant [32] . Note, C θ , FIM , and

 L all depend on the choice of the system input d. 

Common criteria for local design are the ‘ alphabetic family ’ 

10,31] . These criteria each represent a cost function to be min- 

mised, a subset of them [A-optimal, D-optimal, and E ∗-optimal de- 

igns, 33 ] are given in Table 1 , where λmax (X ) and λmin (X ) , respec-

ively, denote the maximum and minimum eigenvalues of a matrix 

 . 

The design criteria in Table 1 are parameter based criteria [33] : 

hese cost functions (as functions of the FIM ) can be interpreted as 

roperties (the shape and size) of the confidence hyper-ellipsoid (a 

eneralisation of the confidence interval for multivariate statistics) 

or the parameters θ [34,35] . Therefore, by improving certain prop- 

rties of the confidence ellipsoid, the uncertainty of the inferred 

arameters using the data measured under an optimally designed 

rotocols should (in theory) be reduced. 

One obvious limitation of the local designs is that they are lo- 

al , i.e. they depend on a particular choice of the model parameters 

 θ = 

ˆ θ in the equations above). Hence the design is only guaran- 

eed to be optimal for that particular choice of parameters. How- 

ver, we do not know the true model parameters in the experi- 

ents by definition. This issue could be alleviated by replacing the 

ocal sensitivity with an averaged sensitivity matrix 

 [ ( S L ) i j ] = 

∫ 
�

( S L ) i j p(θ j )d θ j , (16) 

here p(θ j ) is the probability density function of the jth parame- 

er, defined over a domain � (a subspace of the parameter space). 

he integral in Eq. (16) can be approximated using Monte Carlo 

imulations. Although this averaged sensitivity matrix has been 

hown to give a more robust design [36] , it does not take the mul-

ivariate interaction into account [18] , and hence the framework of 

lobal sensitivity comes into play. 

lobal sensitivity analysis (GSA)-based designs 

One of the most straight forward ways of doing GSA-based 

esign is by replacing the S L in Table 1 with a sensitivity ma- 

rix based on GSA methods [18,37,38] . We can use variance-based 
2 Note that under this framework, the true parameters do not vary, as opposed 

o the Bayesian framework where the true parameters can be treated as random 

ariables. 

E  

v

t

f

4 
ethods such as the Sobol method [also known as the Sobol indices , 

9 ]. The Sobol method decomposes the variance of the model out- 

ut into fractions, and attributes these variances to parameters or 

ets of parameters, usually referred to as the order . The first-order 

obol index attributes these variances to each parameter θ j alone; 

hilst higher order Sobol indices attribute the variances to differ- 

nt combinations of parameters. These variances are calculated us- 

ng a set of parameters sampled within a domain �, a subspace 

f the parameter space. These parameters can be sampled using 

arious methods, for example Monte Carlo methods, or some low- 

iscrepancy sequences (including Sobol sequences or Latin hyper- 

ube sampling); we used the extension of the Sobol sequence by 

altelli [40] and Saltelli et al. [41] here. The first-order Sobol sen- 

itivity index is given by 

 

S G ) i j = 

1 

Var ( y i ) 
Var θ j 

(
E θ− j 

[
y i | θ j 

])
, (17) 

here Var ( y i ) is the total variance of the model output y i , 

ar θ j 
(X ) = E θ j 

(X 2 ) − (E θ j 
(X )) 2 denotes the conditional variance 

nly over parameter θ j , and E θ− j 
[ · ] indicates the expected value 

aken over all parameters θ except parameter θ j . Criteria using S G 
re given in Table 2 . Note that one may further include higher- 

rder Sobol indices for analysing multivariate parameter interac- 

ions and dependencies [38] , but since we would like to maximise 

he independent sensitivity of the parameters for the experimental 

esign, using the first-order sensitivities is sufficient. 

.4. Optimisation of protocol designs 

To perform the optimisation of the protocols as defined by 

q. (3) , we optimise the design measures (cost functions) by vary- 

ng the protocol parameters ( d in Eq. (10) for voltage clamp and in 

q. (11) for current clamp). The protocol was initialised with pa- 

ameters d = d 0 randomly sampled uniformly within the bound- 

ries (the protocol parameter space) defined in Section 2.2 . Opti- 

isations were performed using the covariance matrix adaptation 

volution strategy [42] via our open source Python package, PINTS 

43] . This was repeated 10 times with different initial protocol pa- 

ameters, and the best result out of all repeats was used and pre- 

ented in the results. 

To compute the Sobol indices, we define a hypercube for the 

odel parameter space �, where each conductance value g j in 

q. (6) can be scaled from e −2 ≈ 0 . 14 to e 2 ≈ 7 . 39 times its original

alue. We use the Saltelli et al. [41] extension of a Sobol sequence 

o generate 512 parameter samples within this parameter space �

or computing the Sobol indices. 
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To numerically calculate the local sensitivity matrix S L , we use 

he first-order central difference to approximate the local deriva- 

ives with a step-size of 0.1% of the parameter values. It may be 

orth noting that although LSA-based criteria require local deriva- 

ives, we are not truly interested in (local) infinitesimal changes 

hen designing the protocols, hence a reasonable approximation 

f the derivatives typically sufficies. 

.5. Comparing the performance of OEDs 

ross-measure evaluations 

We defined a cross-measure matrix X for each optimised pro- 

ocol, such that each entry X i, j was the criterion j score for this 

rotocol with currents generated by model i , with 1 < j < N measure 

nd 1 < i < N model . The models indexed by i were the ten Tuss-

her et al. [23] model, the Fink et al. [24] model, the O’Hara 

t al. [20] model, the Chang et al. [25] model, the Tomek et al.

26] model, and the averaged model. The criteria indexed by j

ere the LSA A-, D-, E ∗-designs, and the GSA A-, D-, E ∗-designs,

espectively, for the voltage-clamp mode; j were the LSA A-, D-, 

 

∗-designs, respectively, for the current-clamp mode. 

The numerical values for different cost functions were not di- 

ectly comparable, so we normalised the values. Normalisation 

hould be better than using a simple ranking as it should highlight 

utliers better. Outliers concerned us here, because we expected 

he best protocols to be robust to the model (possible current ki- 

etics in reality) and to perform well under all measures. Ideally, 

e would like to have a protocol that is good under all criteria and

ll possible models of kinetics. The normalisation for each entry 

as calculated using X i, j = (X i, j − a i, j ) / (b i, j − a i, j ) × 100% , where

 i, j and b i, j were the minimum (best) and maximum (worst) scores 

een across all the protocols (including both voltage-clamp and 

urrent-clamp experiments). Note the normalisation (percentile) 

as calculated with only the optimised protocols, i.e. without the 

enchmark protocols, for clarity. Therefore the percentiles shown 

n Figs. 6 and 7 were not necessarily within 0 to 100%. at the en-

ry i, j (i.e. with this criterion and current model). 

ractical evaluations 

We further evaluated the optimised protocols from a practical 

oint of view. We generated synthetic data under these protocols 

ith synthetic noise, and we assessed identifiability of the param- 

ters in Eq. (6) . 

We generated synthetic data using the O’Hara et al. [20] model 

ith ∼ N (0 , σ 2 ) as the synthetic noise, where σ = 0 . 15 AF −1 for

oltage clamp and σ = 0 . 15 mV for current clamp. Then the same 

odel was used to fit the synthetic data, to test the ideal case 

here we know the ground truth kinetics. We reparameterised the 

odels with a scaling factor s j for the maximum conductance g j , 

here s j = 1 was the original literature value. The likelihood of ob- 

erving the data Y with K time points given the model parameters 

was 

p( Y | θ) = 

1 

(2 πσ 2 ) K/ 2 
exp 

(
−

∑ K 
i =1 ( Y i − y i ) 

2 

2 σ 2 

)
. (18) 

he posterior distribution of the parameters was 

p(θ | Y ) = 

p( Y | θ) p(θ) 

p( Y ) 
(19) 

p 
(
θ | Y 

)
∝ p 

(
Y | θ)p 

(
θ
)
, (20) 

here p(θ) is the prior, and p( Y ) is the marginal likelihood which 

s a constant. Uniform priors were used U(0 . 04 , 25) for the scaling

f the conductance values, which was wider than the subspace we 

sed for computing the GSA to test its robustness for parameters 

utside the design parameter space. 
5

The posterior distributions of the parameters were estimated 

sing a Monte-Carlo based sampling scheme—a population MCMC 

44] algorithm with adaptive Metropolis as the base sampler—via 

ur open source Python package, PINTS [43] . We ran four chains 

or the population MCMC, each with 4 × 10 4 samples, and dis- 

arded the first 10 4 samples as warm-up period. 

. Results 

In this section we briefly motivate our OED approach before 

resenting 12 new protocols derived for voltage-clamp and 6 new 

rotocols for current-clamp experiments. Various ways to evaluate 

he ‘quality’ of these optimised protocols are explored and we dis- 

uss some of the properties that we would like or expect them 

o have. To check the designs, we evaluate them using both the- 

retical optimality measures and practical tests in which we infer 

arameters from simulated data. Finally, we compare the OED per- 

ormance against designs found in the literature. 

.1. Optimal experimental designs for patch-clamp experiments 

OED provides a framework for obtaining high-quality, statisti- 

ally grounded designs u that are optimal with respect to a sta- 

istical criterion �. It is based on the assumption that we can pa- 

ameterise the designs u with a control or design variable vector d

uch that it can be optimised with the criterion � that depends 

n the choice of a model M. Two types of experimental protocols 

 u ) were optimised: voltage clamp and current clamp (see § 2.2 ). 

e defined voltage-clamp protocols as sequences of steps with a 

agnitude and duration that could be varied by OED as the design 

ariables d. Our current-clamp protocols consisted of short bursts 

f current injection with a fixed magnitude and duration, here the 

nterval between burst was used as design variable (see Fig. 1 ). 

ED can also work within a variety of constraints, such as restric- 

ions in duration of the experiment or applied voltage ranges, to 

nsure the optimal designs are practically feasible. 

Experiment designs u (d) were optimised based on a design 

easure which consists of a choice of the optimal design crite- 

ion and a choice of model used to perform the design, using a 

lobal optimisation algorithm. For voltage-clamp experiments, we 

sed six design criteria (LSA A-, D-, E ∗-designs, and GSA A-, D-, E ∗-

esigns) and two types of model, giving us in total 12 optimal de- 

ign strategies (see § 2.3 ). These design criteria can be interpreted 

s properties (the shape and size) of the confidence hyper-ellipsoid 

or the calibrated model parameters θ [34,35] . The A-optimal de- 

ign can be interpreted as minimising the average variance of the 

onfidence ellipsoid. The D-optimal design minimises the volume 

f the confidence ellipsoid. The E ∗-optimal design minimises the 

atio of the length of the largest to the smallest axis, making the 

llipsoid as spherical as possible. The resulting optimised proto- 

ols using different strategies are shown in Fig. 2 (Protocols A–

), with the corresponding current ( y = I obs ) simulated using the 

’Hara et al. [20] model (the corresponding eigenvalue spectra are 

hown in Supplementary Figures). For current-clamp experiments, 

e used three design criteria (the LSA A-, D-, E ∗-designs) and two 

ypes of model, giving us in total 6 optimal design strategies. The 

esulting optimised protocols using different strategies are shown 

n Fig. 3 (Protocols O–T) with the corresponding membrane voltage 

 y = V m 

) simulated using the O’Hara et al. [20] model. 

Each of the protocols appears to elicit rich and varied dynam- 

cs. For voltage-clamp protocols, these optimal protocols are also 

horter in duration than most of the conventional protocols, such 

s Protocol M, where long holding steps are usually required for 

ringing the cells back to quasi-steady state. Since these optimal 

rotocols were designed to maximise the information for all model 
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Fig. 2. (A–L) The optimised protocols (shown in grey, values on left axis) using different criteria and the corresponding I obs (shown in red, values on right axis) simulated 

using the O’Hara et al. [20] model. Rows are protocols optimised with different optimal design criteria: the LSA A-, D-, E ∗-designs, and the GSA A-, D-, E ∗-designs. Columns 

are protocols optimised based on different types of models: the single model criterion, and the averaged model criterion. (M, N) The benchmark protocols from Lei et al. 

[45] and from Groenendaal et al. [30] . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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arameters for inference, we evaluate the performance of these op- 

imised protocols and compare them against some protocols from 

he literature. 

.2. Do OEDs help us find model parameters? 

Taking a practical approach, we generated synthetic (simulated) 

ata under these optimised protocols u ( ̂  d ) , then asked the follow- 

ng questions: (i) can we identify the model parameters θ correctly 

sing these synthetic data? (ii) how does the error, if any, and un- 

ertainty in the parameters vary between these optimised proto- 

ols? 

We generated synthetic data using the O’Hara et al. [20] model 

ith i.i.d. Gaussian synthetic noise N (0 , σ 2 ) with zero mean and 

tandard deviation σ = 0 . 15 AF −1 for voltage clamp and σ = 1 m 

 for current clamp. Then the same model was used to fit the syn- 

hetic data, to test whether we can identify the maximum conduc- 

ance parameters θ when we have a good estimate of the kinetics. 

osterior distributions of the parameters were estimated using a 

arkov chain Monte Carlo (MCMC) based sampling scheme [44] , 

here the final chains converged with 

̂ R < 1 . 1 for all parameters 

46] . 
6 
In terms of reducing the uncertainty and error in the inferred 

arameters, the two most successful optimal designs ˆ d for voltage- 

lamp experiments were the LSA D-design and GSA A-design for 

he O’Hara et al. [20] model (Protocols B and D), as shown in 

ig. 4 A. Each chain returned a posterior distribution over the pa- 

ameters, since all chains converge and they are all very similar to 

ach other, we use all three chains to compute the marginal pa- 

ameter distributions (per parameter). The mean (over all the pa- 

ameters) root-mean-square error (RMSE) of these distributions to 

he true values is shown in Fig. 4 B for all of the voltage-clamp

rotocols. The posterior RMSEs of the individual parameter scal- 

ng factors are shown in Supplementary Table S1 , which shows 

hat the dominant contribution to the error was from s NaCa . We 

xpect this is because I NaCa is reasonably small and has fairly 

inear dynamics under voltage clamp which happens to allow it 

o compensate for the sum of the errors in the other inferred 

conductances. 

For current-clamp experiments, all the OED results had a sim- 

lar posterior width, with the most successful optimal design to 

e the LSA A-design for the single model (Protocol O) as shown 

n Fig. 5 A. The mean (over all the parameters) RMSE of these dis- 

ributions is shown in Fig. 5 B for all of the current-clamp proto- 

ols, and the individual parameters are shown in Supplementary 
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Fig. 3. The optimised protocols (shown in grey, the positions at which stimuli were applied) using different criteria and the corresponding membrane voltage V m (shown 

in red, values on right axis) simulated using the O’Hara et al. [20] model. Rows are protocols optimised with different optimal design criteria: the LSA A-, D-, E ∗-designs. 

Protocols were optimised based on (O–Q) the single model criterion, and (R–T) the averaged model criterion. (U/V) The benchmark protocols with 1 Hz pacing, where 

Protocol U uses only the AP biomarkers for parameter inference, and Protocol V uses the full time series. (W) Another benchmark protocol from Groenendaal et al. [30] . (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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able S2 . The same analyses were also repeated for the ten Tuss- 

her et al. [23] model, shown in Supplementary Figures S3 & S4 , 

nd Supplementary Tables S3 & S4 . Similar results as for the O’Hara 

t al. [20] model were observed, demonstrating the conclusions 

ay hold across further models, especially those with similar dy- 

amics. 

.3. Cross-measure assessments of OEDs 

We may also expect the best protocol from those OEDs would 

e a robust good ‘all-round’ protocol. Each of the OED is by defini- 

ion optimal under a given design measure, whilst a robust good 

ll-round design would not be the worst under another design 

easure and, on average, should be good under all measures. 

The performance of all the optimised protocols under a partic- 

lar experimental mode were compared across all the design mea- 

ures; a design measure is defined by the choices of the model and 

he design criterion. We used the ten Tusscher et al. [23] model, 

he Fink et al. [24] model, the O’Hara et al. [20] model, the Dutta

t al. [47] model, the Tomek et al. [26] model, and the averaged 

odel to assess the OED performance; the O’Hara et al. [20] model 
7 
nd the averaged model were used to optimise the protocols, and 

he remaining four were included to assess how these optimised 

rotocols perform should data really arise from cells that are bet- 

er described by these other models. We used the same criteria to 

ssess the OEDs, and their combinations form what we refer to as 

he cross-measure matrix. Each design measure entry of the cross- 

easure matrix was normalised to 0-100% with the best and the 

orst values seen across all the OED protocols such that it can be 

ompared with other design measures. 

Examples of cross-measure assessments for the OEDs are shown 

n Fig. 6 A for voltage clamp and Fig. 7 A for current clamp. Fig. 6 A

hows our best voltage-clamp protocol design, the OED with the 

averaged model score’ under GSA D-criterion (Protocol K), which 

erforms well under all measures and model currents. Fig. 7 A 

hows our best current-clamp protocol design, the OED with the 

averaged model score’ under LSA A-criterion (Protocol R), which 

erforms well under all measures and model currents. The ‘best’ 

rotocols in this assessment were decided based simply on the 

ean of all entries in the cross-measure matrix. The averaged 

core for each optimised protocol is shown in Fig. 6 C for voltage 

lamp and Fig. 7 C for current clamp. 
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Fig. 4. The posterior distribution of the parameters for the synthetic study with voltage clamp, generated with the O’Hara et al. [20] model and fitted with the same model. 

(A) The marginal posterior for the best two protocols: LSA D- and GSA A-designs for the O’Hara et al. [20] model (Protocols B and D), according to the mean RMSE of the 

marginal posterior to the true values, and for the two benchmark protocols. (B) The mean RMSE of the marginal posterior for all of the optimised protocols, as well as the 

benchmark protocols. 
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Fig. 6 C and Fig. 7 C show that the protocols based on multi-

le models (bottom row) are similar to those based on only the 

’Hara et al. [20] model (top row), although the best protocols for 

ach experimental mode is based on multiple models. This may be 

xpected as the protocols based on only one model may perform 

elatively badly under other models. We also noticed that the pro- 

ocols based on the LSA E criterion are worse than the other LSA 

riteria. Finally, in Fig. 6 C, the protocols based on the GSA criteria 

re better than (or similar to) their LSA counterparts, apart from 

he E ∗-design using the O’Hara et al. [20] model. 

.4. OEDs outperform literature experimental designs 

Finally, we assessed the OED results by comparing their per- 

ormance against some of the designs of experiments in the 
8 
iterature—a benchmark comparison. For voltage-clamp experi- 

ents, we used (1) Protocol M: a simple step protocol from 

ei et al. [45] and (2) Protocol N: an expertly-designed protocol 

rom Groenendaal et al. [30] to benchmark the performance. For 

urrent-clamp experiments, we used (1) Protocol W: the random 

acing protocol from Groenendaal et al. [30] ; (2) Protocol V: a sim- 

le 1 Hz constant pacing protocol; and (3) Protocol U: the derived 

ummary statistics (biomarkers) based on 1 Hz pacing, which are 

ommonly used in the literature [48–55] . 

For the voltage-clamp protocols, the benchmark protocol from 

ei et al. [45] (Protocol M) shown in Fig. 6 B performed badly for 

ost of the design measures, which may be expected as it is not 

esigned using any of these measures. Similarly, the protocol from 

roenendaal et al. [30] scored badly compared to OED protocols, 

lthough its score was, on average, just twice that of the worst 
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(A)

(B)

Fig. 5. The posterior distribution of the parameters for the synthetic study with current clamp, generated with the O’Hara et al. [20] model and fitted with the same model. 

(A) The marginal posterior for the best two protocols: LSA A-design (Protocols O and R), according to the mean RMSE of the marginal posterior to the true values, and for 

the two benchmark protocols. Note that y-axes are rescaled to unity for visualisation purpose. Magnification of this figure around true value is provided in Supplementary 

Figures. (B) The mean RMSE of the marginal posterior for all of the optimised protocols, as well as the benchmark protocols. 
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ED protocol (Protocol F) which is impressive given its manual de- 

ign. Fig. 4 also shows that the benchmark protocols resulted in 

onsiderably wider posterior distributions than most of the opti- 

ised protocols. Additionally, Supplementary Table S1 shows that 

rotocol B improves the posterior RMSEs for all of the parame- 

ers compared to the benchmark protocols; in Fig. 4 B, where Pro- 

ocol E appeared to be the worst, it actually helped identify all the 

ther parameters better than the benchmark protocols apart from 

 NaCa . Often the number of data samples (or data points) in the 

.i.d. Gaussian likelihood that we use is a major factor determin- 

ng the width of the posterior. Here even for the protocol from Lei 

t al. [45] (Protocol M) which is much longer in duration (hence 

ore data samples) than any of the optimised protocols, the width 

f its posterior is still bigger than most of the optimised proto- 

ols. Interestingly, even though the protocol by Groenendaal et al. 

30] (Protocol N) was designed specifically to tease out different 

ynamics of the ionic currents, the width of the posterior is simi- 

ar to that of the protocol from Lei et al. [45] . Overall, this shows

hat the OED methods were successful in reducing the parameter 

ncertainty for voltage-clamp experiments. 
9 
For current-clamp experiments, the biomarkers that we used 

ere action potential duration (APD) at 10% repolarisation (APD 10 ), 

PD 20 , APD 30 , APD 40 , APD 50 , APD 60 , APD 70 , APD 80 , APD 90 , trian-

ularisation (defined as APD 90 –APD 40 ), plateau duration, area un- 

er the curve of voltage trace (at APD 30 ), maximum upstroke 

ate/velocity (MUR), resting potential, maximum voltage ( V max ), 

ome peak, and action potential amplitude (APA) which were used 

n Bartolucci et al. [48] , Britton et al. [49] , Jæger et al. [ 50–52 ],

aci et al. [ 53,54 ], Tveito et al. [55] . To perform practical evalua-

ions for biomarkers, we used a percentage difference for calcu- 

ating the likelihood as it was done similarly in e.g. Jæger et al. 

50] , Tveito et al. [55] . We first note that the same was observed

or the 1Hz pacing protocol (Protocol V) and the Groenendaal et al. 

30] protocol (Protocol W): not only is the cross evaluation matrix 

onsistently worse than the OED protocols ( Fig. 7 B), but the poste- 

ior obtained in the practical assessment is also wider than all of 

he OED protocols ( Fig. 5 ). The results from using the biomarkers 

Protocol U, Fig. 5 A) were not only more uncertain than the other 

pproaches but also biased in some of the parameter estimates, 

.g. I Na and I to . Since Protocol W was designed to improve the in-
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(A) (B)

(C)

Fig. 6. Cross-measure evaluations for the optimised voltage-clamp protocols, compared against the benchmark protocols. (A) The normalised cross-measure matrix for the 

best protocol, Protocol K, optimised using the GSA D-criterion and the averaged model (indicated with the red box). (B) The matrix for the worst protocol, Protocol M, from 

Lei et al. [45] . (C) The mean of the normalised cross-measure evaluations for all of the optimised protocols, as well as the benchmark protocols. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

(A) (B) (C)

Fig. 7. Cross-measure evaluations for the optimised current-clamp protocols, compared against the benchmark protocols. (A) The normalised cross-measure matrix for the 

best protocol, Protocol R, optimised using the LSA A-criterion and the averaged model (indicated with the red box). (B) The matrix for the worst protocol, Protocol U, 

biomarker estimation with 1Hz pacing. (C) The mean of the normalised cross-measure evaluations for all of the optimised protocols, as well as the benchmark protocols. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

10 
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ormation gain by randomly pacing the system, it outperformed 

rotocols U and V. However, we showed that the OED protocols 

hich maximised the information gain were better in estimating 

he model parameters than those in the literature, including Proto- 

ol W. 

. Discussion 

We have applied OED to various AP models to design voltage- 

lamp and current-clamp protocols for fitting maximum conduc- 

ances. This is, to our knowledge, the first time such an approach 

as been taken in cardiac cellular electrophysiology. Some stud- 

es have looked into designing experiments for model calibration 

rom expertly designed protocols, ranging from calibrating models 

f individual ionic current dynamics [27–29,56,57] to whole-cell 

odels of APs of cardiomyocytes [30] ; similarly in neuroscience 

58,59] too. However, these protocols are not truly ‘optimal’ un- 

er a certain statistical or objective measure; they are designed 

hrough (subjective) expert views. Our (objectively) optimised pro- 

ocols successfully reduced the uncertainty in the inferred param- 

ters, compared to some of the conventional protocols. 

We explored various designs adapted from the OED literature 

12,16,18] , with the aim of designing experiments that help param- 

ter reconstruction to be more accurate and reliable. Most of them 

ere able to improve the uncertainty in the inferred parameters 

ompared to the benchmark protocols, as assessed via our practical 

valuations. We tried to seek the best protocol amongst the OED 

enerated protocols. However, we were not able to identify the 

est one, as each of them perform slightly differently under dif- 

erent situations, although the E ∗-design appeared to balance the 

inimum and maximum eigenvalues of FIM by reducing the high- 

st sensitivity which made the resulting protocols relatively short 

nd resulted in one of the worst performances. For example Proto- 

ol K was the best in the cross-measures comparison, whilst Pro- 

ocol D was better in reducing parameter uncertainty and error. 

e found that the protocols based on averaged model were con- 

istently (slightly) better than the others, which may be a better 

ay for designing patch-clamp protocols, which implicitly makes 

ome allowance for differences in ion current kinetics. Although 

ne could easily extend the presented methodology to create op- 

imal protocols for more parameters, the OED approach does not 

utomatically solve all potential issues, e.g. an a-priori unidentifi- 

bility problem, or computational challenges such as the curse of 

imensionality in large-scale parameter inference. 

Fitting conductances to whole-cell recordings while using ion 

hannel kinetics models taken (or slightly adapted) from the lit- 

rature, has been commonly used [8] . Many inference approaches 

nd biomarkers have been adopted, including multivariate regres- 

ion [60] , history matching [61] , “population of models” [62] , and 

oment-matching [63] , and all of them assumed “out of the box”

r only slightly modified kinetics models when fitting maximum 

onductances. Similarly Johnstone et al. [64] adapted a Bayesian 

pproach with MCMC to infer maximum conductances using AP 

ecordings. Groenendaal et al. [30] proposed to use (cell-specific) 

oltage-clamp and current-clamp data with a genetic algorithm to 

nd maximum conductances in an AP model. Some of these meth- 

ds were included in our benchmark comparison for our approach; 

e have shown that optimal designs outperform these literature 

ethods in terms of recovering parameters from simulated data. 

When inspecting the error (and uncertainty) of the inferred 

arameters from voltage- and current-clamp experiments ( Figs. 4 

 5 ), current clamping appears to be the superior methodology for 

arameter reconstruction for most of the protocols (but not simply 

ith biomarker-equivalent summary statistics as discussed below). 

his could be due to the highly nonlinear interaction between all 

f the currents in current clamping, whilst voltage clamping by 
11 
efinition unties these and turns the system into independent cur- 

ent components. These nonlinear interactions in current-clamp 

ode may actually help pin down the parameters, because even 

hough some of the currents are small in some parts of the data 

races, we may gain information about these currents by the help 

f the nonlinear interactions with the remaining currents. How- 

ver, this phenomenon is based on the assumption that there are 

o model discrepancies. In practice we believe voltage clamping 

ay provide important information by studying each current more 

independently’, i.e. less vulnerable to discrepancy in one current 

ffecting inf erences about another, therefore we would not advo- 

ate to do just one type of experiment but not the other. 

Amongst all the methods that we compared, the biomarker ap- 

roach performed the worst, even though it has been one of the 

ost popular approaches. We further note that some of the biases 

n the biomarker posteriors were due to the biases introduced in 

stimating the biomarkers with noisy data. Such an issue is illus- 

rated in Fig. 8 A which is a consequence of using biomarker es- 

imations from noisy AP traces. In Fig. 8 A, the biomarkers were 

stimated for 10 0 0 noise realisations and compared against the 

iomarkers taken from idealised noise-free data (dashed line). For 

xample, there are no simple ways of estimating the unbiased (i.e. 

either over- nor under-estimating) maximum voltage or the AP 

mplitude with noisy AP traces; if we simply define the maximum 

oltage as the maximum voltage value of the noisy data, as done 

ere, then we will overestimate the actual maximum voltage most 

f the time. This is because we have a number of data samples 

sampling time points) around the underlying maximum voltage 

here the noise is centred, then the noisy data will have values 

igger (as well as smaller) than the mean most of the time, giv- 

ng an overestimated maximum voltage value. However, if we de- 

ne the maximum voltage as the averaged value over a (short) 

eriod of time around the maximum voltage value of the noisy 

ata, then the maximum voltage will be biased differently depend- 

ng on the duration of the averaging period and the shape of the 

P. Therefore, depending on the data postprocessing procedure, the 

iomarkers, and hence model parameters inferred from these, can 

e biased differently. 

The biases introduced during biomarker extraction ( Fig. 8 A) 

herefore affect posterior predictions. Fig. 8 B shows such poste- 

ior predictions using the parameter posteriors shown in Fig. 5 , 

here grey and black (dashed) lines show the data and the un- 

erlying ground truth, blue and orange show the predictions from 

he posteriors estimated using Protocol U (biomarkers) and Proto- 

ol O (LSA A with single model). The inset of Fig. 8 B shows a mag-

ification around the apex of the AP, highlighting the biases of the 

osterior predictions with biomarkers (blue) as compared to the 

ED results (orange). These biases may in turn cause issues during 

odel predictions for unseen situations. We illustrate these issues 

n Fig. 8 C which attempts to predict the AP under a 90% reduction 

f I Kr together with a 50% reduction of I Ks . The huge variability and

naccuracy of the posterior prediction using biomarkers (blue) are 

onsequences of both increased parameter unidentifiability as well 

s bias discussed above, as shown by comparison with the pre- 

ictions with parameters inferred by fitting to the full time traces 

rom Protocol O (orange). 

Several limitations of this work suggest future studies to ad- 

ance the design of experimental protocols. First, all existing OED 

pproaches, to our knowledge, provide optimal designs only un- 

er the assumption of having a correct underlying model, mean- 

ng when there is discrepancy between the model we use and the 

eal system (including the remaining parameters of the model that 

ere left out for the design and inference, experimental artefacts 

65–68] and noise/observation model error [69–72] ) then there is 

o guarantee that the designs will work better, or even work well, 

s discussed in Lei et al. [73] , Lei [74] . We believe the presented
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Fig. 8. Undesired effects of using biomarkers (Protocol U) for AP parameter inference. (A) Various biomarkers were estimated for 10 0 0 noise realisations and compared 

against the biomarkers estimated without noise (dashed line). (B) Posterior predictions using the parameter posterior samples shown in Fig. 5 (blue for Protocol U, biomark- 

ers, and orange for Protocol O, OED) for 1Hz prepaced AP. (C) Posterior predictions for 1HZ prepaced AP under a 90% reduction of I Kr together with a 50% reduction of I Ks . 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

a

t

c

t

O

f

g

p

i

a

t

A

t

t

t

a

a

m

p

p

o

i

p

F

m

t

n

2

S

F

T

s

C

c

a

A

D

o

a

v

8

S

D

s

c

C

S

M

D

G

n

A

p

T

S

f

1

pproach is the first step towards promoting and setting up op- 

imisation of experimental designs in the field. In the future, in- 

orporating the minimisation of the impact of additional uncer- 

ainties in the underlying mathematical descriptions as part of the 

ED measures will be an important next step towards improved 

uture rounds of experimental design. The results, however, have 

enerated experimental protocols that can readily be tested ex- 

erimentally, especially since these designs can be implemented 

n most cellular electrophysiology laboratories, and these multiple 

utomatically generated protocols could also potentially be used 

o quantify predictive uncertainty due to model discrepancy [75] . 

 second limitation is that although we tested 18 OEDs, most of 

hese are ‘classical’ design criteria that relies on certain approxima- 

ion of the covariance of the estimates. In future work, we intend 

o determine whether more complex criteria or approaches, such 

s Bayesian decision theoretic approach [76,77] and reinforcement 

pproaches [78] , can improve the protocol design. 

In summary, we have demonstrated that using mechanistic 

athematical modelling and optimal experimental design can im- 

rove identification of model parameters and hence its theoretical 

redictive power. This work offers a methodology to automatically, 

bjectively develop experimental protocols that can alleviate the 

ssue of model parameter unidentifiability when collecting new ex- 

erimental data. 
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