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Abstract

Background and Purpose: Drug-induced reduction of the rapid delayed rectifier potassium
current carried by the human Ether-à-go-go-Related Gene (hERG) channel is associated with in-
creased risk of arrhythmias. Recent updates to drug safety regulatory guidelines attempt to capture
each drug’s hERG binding mechanism by combining in vitro assays with in silico simulations. In
this study, we investigate the impact on in silico proarrhythmic risk predictions due to uncertainty
in the hERG binding mechanism and physiological hERG current model.

Experimental Approach: Possible pharmacological binding models were designed for the
hERG channel to account for known and postulated small molecule binding mechanisms. After
selecting a subset of plausible binding models for each compound through calibration to available
voltage-clamp electrophysiology data, we assessed their effects, and the effects of different physio-
logical models, on proarrhythmic risk predictions.

Key Results: For some compounds, multiple binding mechanisms can explain the same data
produced under the safety testing guidelines, which results in different inferred binding rates. This
can result in substantial uncertainty in the predicted torsade risk, which often spans more than one
risk category. By comparison, we found that the effect of a different hERG physiological current
model on risk classification was subtle.

Conclusion and Implications: The approach developed in this study assesses the impact of
uncertainty in hERG binding mechanisms on predictions of drug-induced proarrhythmic risk. For
some compounds, these results imply the need for additional binding data to decrease uncertainty
in safety-critical applications.

Keywords: safety pharmacology, CiPA, mathematical modelling, hERG, binding mechanism, torsade, proarrhythmic

risk
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1 Introduction

Reduction of the rapid delayed rectifier potassium current, IKr, can lengthen the action potential (AP)
which is associated with increased risk of cardiac arrhythmias, including Torsade de Pointes (Curran
et al., 1995; Heist and Ruskin, 2010), although this risk is strongly modulated by multi-channel block
(Mirams et al., 2011). The human Ether-à-go-go-Related Gene (hERG) encodes the pore-forming
alpha subunit of the ion channel KV11.1 that conducts IKr (Sanguinetti et al., 1995). The hERG
channel is highly susceptible to blockage or functional inhibition by a variety of pharmaceutical small
molecules with a unique binding site (Sanguinetti and Tristani-Firouzi, 2006; Vandenberg et al., 2012),
and its in vitro studies are part of the regulatory guidelines for proarrhythmic risk assessment (ICH,
2005). Recently, the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative and updates of
regulatory guidelines consider a more nuanced characterisation of the proarrhythmic potential of a
drug, by combining in vitro assays with in silico simulations that attempt to capture the details of
each drug’s hERG binding mechanism, particularly the degree to which each drug is trapped (cannot
unbind) when the channel closes (Sager et al., 2014; Li et al., 2019; ICH, 2022).

The inner cavity of the hERG channel is its principal drug binding site (Mitcheson, 2008). The
molecular structure of the channel suggests that the channels can be blocked by pharmaceutical small
molecules—we simply refer to these as “compounds” throughout—only when the channels are not
closed (Butler et al., 2020), consistent with the observation that most of the compounds do not bind
at negative (resting/repolarised) membrane potentials, when hERG channels are in a non-conducting
closed state (Li et al., 2017). After binding to the channel, compounds unbind when channels are
in different states and/or at different voltages (Mitcheson et al., 2000; Thouta et al., 2018). How-
ever, the unbinding process for some compounds can be impeded when the channels close, and the
compounds remain bound, or “trapped ” within the central cavity (Mitcheson et al., 2000; Stork et al.,
2007; Windisch et al., 2011; Thouta et al., 2018), such as bepridil (Pareja et al., 2013) and dofetilide
(Milnes et al., 2010); as opposed to, for example, cisapride (Milnes et al., 2010) and verapamil (Zhang
et al., 1999) which unbind when the chancels close. Furthermore, according to the modulated receptor
hypothesis, the difference in affinity determines the preferential binding of a compound to one of the
states (Hille, 1977; Hondeghem and Katzung, 1977; Hondeghem, 1987; Carmeliet and Mubagwa, 1998),
and its special case, the guarded receptor hypothesis, suggests the possibility compounds bind to a
particular state only (Starmer and Courtney, 1986; Starmer et al., 1990, 1991). Both of these have
been applied to models of hERG binding (Thurner et al., 2014; Lee et al., 2017; Veroli et al., 2013;
Gomis-Tena et al., 2020).

To capture all the possible consequences of state-dependent binding within in silico models, all the
above possibilities for drug binding to hERG should be considered. However, this raises the question
of whether one size fits all—does the hERG binding model used in CiPA (Li et al., 2017) account
for all the binding properties of interest, and do the model parameters reflect the underlying binding
mechanisms? Furthermore, how sensitive is the proarrhythmic risk classification metric—the torsade
metric score (Li et al., 2019)—to any uncertainty in the physiological hERG model and the binding
mechanisms?

2 Methods

In this study, we designed a set of possible pharmacological binding models for the hERG channel that
account for the known or postulated binding mechanisms (which we will describe in § 2.1–2.2). These
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Figure 1: The base physiological models of the hERG channel considered in this study under drug-free
conditions. (A) A six-state model from Li et al. (2017); Dutta et al. (2017) with the states renamed to
match their respective physical states. (B) A symmetric four-state model from Beattie et al. (2018);
Lei et al. (2019a). The models are used as the hERG model for studying drug effects.

models were calibrated to voltage-clamp electrophysiology data under the Milnes et al. (2010) protocol
(§ 2.3.1) from Li et al. (2017, 2019), and plausible binding models that can explain the data well (or
are approximately as good a fit to the data as the Li et al. (2017) model) were selected (§ 2.3.2). We
then used these binding models with different hERG physiological models to calculate the “CiPA v1.0”
risk metrics to assess the possible impact of different hERG binding mechanisms on such predictions
(§ 2.4).

2.1 hERG physiological models

The basic physiological models of hERG describe the drug-free, control behaviour of the rapid de-
layed rectifier potassium current (IKr) at physiological temperature and conditions. Two physiological
models are used in this study, with the transition rates following pi exp(pjV ), where pi and pj are phys-
iological model parameters taken from the literature. The first one, physiological model A, is shown
in Figure 1A and is a six-state Markov model with two inactivated closed (IC) states, two closed (C)
states, an inactivated (I) state, an open (O) state, and transition rates a1 to a7 and b1 to b7 (Li et al.,
2017; Dutta et al., 2017). The second model, physiological model B, is a symmetric four-state model
(Figure 1B) with transition rates k1 to k4, which is equivalent to a Hodgkin & Huxley-style model with
one activation gate and one inactivation gate (the 37 ◦C average model in Lei et al., 2019a,b).

2.2 Pharmacological binding models for hERG

To account for various known or proposed mechanisms for compounds binding to the hERG channel,
a set of pharmacological binding models was designed as shown in Figure 2. The hERG physiological
model is indicated in black (states I and O, and dots), representing either of the models from Figure 1.

In Figure 2, Model 1 represents a compound that can bind to both open (O) and inactivated
(I) states without being trapped in the binding pocket, and assumes the open and inactivated states
share the same binding rate and unbinding rate, as shown in red. The binding rate is assumed to
be proportional to the drug concentration [D] raised to the power of the Hill coefficient, n, and the
association rate constant is kon; the unbinding rate is assumed to be a constant koff . Model 2 allows
binding only to the open state; the inactivated version of Model 2 (Model 2i) allows binding only in
the inactivated state, using the guarded receptor hypothesis. We have not observed any evidence that
existing drugs bind at the resting potential (≈ 80mV) when the channel is closed, therefore we have
excluded binding models that bind only to the closed state. Model 3 is a variant of Model 1 where
transition between the compound-bound states are also allowed, and happen at the same rate as the
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Figure 2: A set of pharmacological models representing different mechanisms of drug binding, where
black (states I and O, and dots) is the physiological model of the hERG channel in Figure 1. Dashed
double arrows indicate the rate marked with an asterisk is set by microscopic reversibility. Model 12
is identical to the pharmacological binding component in the CiPAv1.0 model (Li et al., 2017).
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(unbound) O −⇀↽− I transitions.
Models 4 to 5i are the trapped equivalents of Models 1 to 2i, where the trapping component is

indicated in grey, a ‘mirror image’ of the hERG physiological model with the same transition rates to
admit the possibility of channels closing and preventing unbinding from CD or ICD states (not shown
in the schematics). Model 6 relaxes the mirror trapping component of Model 4 by allowing an extra
degree of freedom with a trapping rate factor ktrap multiplying the original transition rate. Models 7
to 10 allow an extra degree of freedom compared to Models 1, 3, 4, and 6 by assuming independent
binding and unbinding rates for open and inactivated states—the modulated receptor hypothesis—
whilst enforcing microscopic reversibility by specifying rates indicated by an asterisk as a function of
the other rates in the closed loop (Colquhoun et al., 2004). Model 11 introduces independent trapped
states for the open and inactivated compound-bound states with transition rates ktrap and kuntrap,
which is the ‘intermediate encounter complex’ model in Windley et al. (2016).

Finally, Model 12 is the same model (equations) as the CiPA v1.0 model proposed by Li et al.
(2017)—the reference model of the study but we will refit parameters in this study. In Model 12,
rather than the drug binding rate being linearly proportional to [D]n, instead it saturates, and this is
represented using a Hill equation:

Hill ([D] | EC50, n) =
[D]n

[D]n + ECn
50

, (1)

where EC50 is a half maximal effective concentration; in this case, when [D] = EC50, the binding
rate is half of its maximum rate. Note that the binding rate parameter for Model 12 has a unit of
ms−1, so we denote it as k̂on to differentiate it from kon in the other binding models (which have units
of ms−1 nM−n). When [D] ≪ EC50, Model 12 reduces to the usual linear binding rate, kon[D]n; we
consider this case separately as Model 13. Furthermore, Models 12 and 13 assume the untrapping
rate follows a sigmoid function of the membrane voltage X(V ) =

(
1 + exp

(
(V1/2,trap − V )/6.789

))−1

instead of the voltage dependence of the control condition—a mirror image of the hERG physiological
model; they also assume a fixed trapping rate ktrap = 3.5×10−5ms−1, with V1/2,trap altering the degree
of trapping (Li et al., 2017).

We also included two additional models: Models 0a and 0b, as basic and standard ‘conductance
block’ models for drug effects. We consider an ‘all-state-blocker’ model that has binding and unbinding
rates, kon[D]n and koff , for all channel states. The degree of block is then independent of state
occupancy, and is equivalent to having a modulating fraction of unavailable channels or ‘b gate’ such
that we scale (multiply) the drug-free current by (1− b). b itself follows the equation

db

dt
= kon[D]n(1− b)− koffb, (2)

with an initial condition of b = 0 at the time a compound is first introduced, we call this Model 0b.
Model 0a is a simple conductance scaling model which is equivalent to assuming Model 0b is an
instantaneous process, i.e. the degree of block b is set immediately to the steady state of Eq. (2):

b∞ =
kon[D]n

kon[D]n + koff
=

[D]n

[D]n + koff/kon
=

[D]n

[D]n + ICn
50

. (3)

The ratio koff/kon in Model 0b is known as the dissociation constant and is equivalent to ICn
50 in

the Hill equation in Model 0a. All the binding model parameters that need to be calibrated on a
compound-specific basis are listed in Table 1.
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Table 1: The model parameters for all the binding models in Figure 2. The asterisk indicates the rate
parameter was determined by the microscopic reversibility.

Model Binding parameters Trapping parameters

0a n IC50

0b, 1, 3, 4 n kon koff

2, 5 n kon,O koff,O

2i, 5i n kon,I koff,I

6 n kon koff ktrap

7 n kon,O koff,O kon,I koff,I

8, 9, 10 n kon,O koff,O kon,I ∗

11 n kon koff ktrap kuntrap

12 n k̂on koff EC50 V1/2,trap

13 n kon koff V1/2,trap

2.3 Data and Statistical Analysis

2.3.1 Electrophysiology data

The voltage-clamp electrophysiology data were taken for the 28 CiPA training and validation com-
pounds (Li et al., 2017, 2019) where manual patch-clamp experiments were performed on HEK293
cells stably expressing hERG1a subunit at 37 ◦C. Data were collected using a modified Milnes’ pro-
tocol (Milnes et al., 2010); the protocol had 10 sweeps measured with 10ms time point interval, and
each repeat consisted of 1 s (with leak step) at the resting potential (−80mV), followed by a long
voltage step to 0mV for 10 s, before returning to the resting potential for 14 s. For the details of the
experiments, please refer to Li et al. (2017).

2.3.2 Calibration of pharmacological binding models

We calibrated/fitted each of the pharmacological binding models in Figure 2 with each of the hERG
physiological models in Figure 1 independently to the voltage-clamp electrophysiology data for each
compound. The available data have been normalised to the control current, giving the fraction of
unblocked current which reveals the change in current due to the drug binding. Furthermore, only
the data at the voltage step 0mV (time interval 1.1–11 s) for the 10 sweeps were used; the remaining
data at the resting potential (−80mV) will have almost no current, giving little information about
the drug binding. All models, except Model 0a, were calibrated by minimising the root-mean-square
difference (RMSD) of the percentage current between the model output and the mean experimental
data from 10 sweeps for four different concentrations of a compound, giving 4 × 10 × 990 = 39600

data points for each compound. The optimisation was performed with logarithmic-transformed model
parameters, except V1/2,trap in Models 12 and 13. This allows a better search across a wide parameter
range, especially for the rate parameters. The optimisation was performed using the covariance matrix
adaptation-evolution strategy (CMA-ES) algorithm (Hansen, 2006) in PINTS (Clerx et al., 2019),
and was repeated 10 times from different initial guesses sampled from wide boundaries (kon, koff ∈
[10−7, 1]ms−1, ktrap, kuntrap ∈ [10−9, 103]ms−1, k̂on ∈ [10−6, 109]ms−1 nM−n, ECn

50 ∈ [1, 109] nMn,
V1/2,trap ∈ [0, 200]mV, and n ∈ [0.2, 2]) to ensure we arrived at a global minimum. The calibration
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was repeated for all 28 compounds listed in Li et al. (2019).
Model 0a is a special case of Model 0b where drug binding is approximated as instantaneously

reaching steady state. Therefore Model 0a should not be calibrated to transient experimental data.
Hence, the parameters of Model 0a were directly taken as the steady state of Model 0b—ICn

50 of
Model 0a in Table 1 was calculated as the dissociation constant koff/kon of Model 0b, as Eq. (3)
suggests.

However, since each pharmacological binding model in Figure 2 was designed to model a specific
mechanism, not all the models are expected to be able to describe all the compounds that were
tested. Therefore each calibrated binding model was assessed by comparing its fitted RMSD to the
RMSD of bootstrapped samples of the data which were computed as follows: since each of 10 repeated
experiments at each concentration was independent, for one compound across all four concentrations,
there are 104 permutations. Therefore, we randomly selected (with replacement) one trace out of the
ten available for each concentration to obtain a set of 4 traces for all concentrations; the RMSD of this
set to the mean of the experimental data was computed, giving the RMSD of a “bootstrapped” data
trace. This process was repeated 1000 times to get a range of RMSDs based on these bootstrapped
samples of the data. This essentially compares how well the models fit to the mean data relative
to an individual data trace’s fit to the mean data, providing a compound-dataset-specific measure of
goodness-of-fit. A pharmacological binding model was classified as a plausible model if its RMSD was
either (a) smaller than the maximum (excluding outliers) RMSD of the bootstrap samples of the data
or (b) within 20% of the RMSD of the CiPAv1.0 reference model.

2.4 AP models, qnet and torsade metric scores

To assess the impact of the choice of hERG binding model on predictions of drug-induced proarrhythmic
risk, we adapted the approach used in Li et al. (2019). We used the optimised CiPA v1.0 AP model by
Dutta et al. (2017) for predicting the effects on AP due to different hERG binding mechanisms. We
replaced the “dynamic hERG-binding model” in the AP model with one of the successfully calibrated
pharmacological binding models in Figure 2. To account for multiple ion channel block effects, the
Hill equation characterised by the half-inhibition concentration (IC50) and the Hill coefficient (n)—
Model 0a—was used to model the drug effects on three other currents, the fast sodium current (INa),
the late sodium current (INaL), and the L-type calcium current (ICaL), using the reported median
values from Li et al. (2019).

The hERG physiological model can be either of the models shown in Figure 1. However, to use the
new Figure 1B hERG physiological model, we re-calibrated the IKr conductance, in control (drug-free)
conditions, by matching the AP duration at 90% repolarisation (APD90) at 0.5Hz pacing (−80A/F

stimulus amplitude and 0.5ms duration) after 1000 paces at (quasi-)steady state. We obtained a new
IKr conductance of 0.0912 pA/pF for the hERG physiological model B in the AP model that resulted
in the same APD90 as the CiPA v1.0 model.

The hERG-binding-model-replaced-AP models were used to calculate the metric qnet following the
definition in Dutta et al. (2017). Pacing at 0.5Hz (−80A/F stimulus amplitude and 0.5ms dura-
tion) was initialised from the steady state under control-conditions and continued for 1000 paces after
compound addition, at multiples of each compound’s maximum therapeutic concentrations (Cmax).
The qnet metric was defined as the net charge over one beat carried by IKr, INaL, ICaL, the transient
outward potassium current (Ito), the slow rectifier potassium current (IKs), and the inwardly recti-
fying potassium current (IK1). The metric was computed by integrating the sum of the six currents
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between two consecutive stimuli (with time step 0.01ms) using the trapezium rule. The proarrhythmic
risk prediction was made using the torsade metric score, defined as the mean qnet value averaged at
1×, 2×, 3×, 4×Cmax (Li et al., 2019).

Finally, following Li et al. (2019), an ordinal logistic regression model (all-threshold variant, Rennie
and Srebro, 2005) was used to estimate the new drug-induced proarrhythmic risk thresholds for low-,
intermediate-, and high-risk categories, using the torsade metric as the feature. The classifier was
trained with L2 regularisation using only the training compounds and was solved with the L-BFGS-B
algorithm in SciPy (Virtanen et al., 2020). The two thresholds for separating (a) the low-risk category
from intermediate/high and (b) high from low/intermediate risks were calculated using

Threshold 1 =
1

β1
log
(
e−βb

0 − 2e−βa
0

)
, (4)

Threshold 2 =
1

β1
log

(
e−βa

0−βb
0

e−βb
0 − 2e−βa

0

)
, (5)

where βa
0 and βb

0 are the intercepts, and β1 the linear coefficient (of the torsade metric), of the linear
equations that map the torsade metric through a logistic function to the cumulative probabilities of
the risk categories within the logistic regression model.

3 Results

3.1 Multiple binding mechanisms can explain the same drug effects

All binding models (Figure 2) were calibrated to the experimental data for each compound indepen-
dently and compared against the maximum RMSD for bootstrapped samples of the data. Figure 3
shows the calibrated binding models (left) and their RMSDs to the mean experimental data (right)
across all binding models, for three example compounds: dofetilide (top), terfenadine (middle), and
verapamil (bottom). The percentage current plots in Figure 3 (left) show only the effect of the drug
over time for the 10 pulses of holding potential (0mV) in CiPA-Milnes’ protocol. Regardless of the
physiological models (A, squares and B, circles), the results of the calibration of the binding models
were similar. The results of all the remaining compounds are shown in Supplementary Figures.

For dofetilide, a trapped drug (Milnes et al., 2010), all binding models except the steady-state
conductance scaling model (Model 0a) were able to fit the calibration data, and so we cannot unpick
the binding mechanisms of this drug with these data. The four grey horizontal lines in Figure 3 (left)
are predictions of Model 0a, the only implausible model for dofetilide. Model 0a was the only model
that showed no dynamics in the percentage current plots as, by definition, it scales only the conduc-
tance of the model so its effect on IKr must be constant over time. Another model that lacked in
the drug dynamics was Model 0b, the all-state binding model, which marginally passed the RMSD
check. Model 0b modelled the drug effect with the b gate in Eq. (2) that is independent of channel
state/voltage, producing a single exponential decay over time—even during the long resting poten-
tial (−80mV) of CiPA-Milnes’ protocol (although not shown) when the channels were in the closed
state(s), resulting in the drop in current between pulses, when the data show (if anything) a slight
restoration of current between pulses.

The other two example compounds in Figure 3, terfenadine and verapamil, had a weaker to no
trapping tendency compared to dofetilide; that is, current recovers significantly between 0mV pulses,
suggesting unbinding rather than trapping at −80mV. Interestingly, more binding models failed to
fit to the experimental data of these two drugs. For terfenadine, a weakly-trapped drug (Yang et al.,
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Figure 3: Calibration of the binding models and their RMSDs for three example compounds: dofetilide
(top row), terfenadine (middle row), and verapamil (bottom row). (Left column) Shows the
percentage current of the data (transparent lines) and the calibrated binding models (solid lines) for
all four concentrations used during calibration. (Right column) Shows the RMSD of all models
compared to the RMSD of the bootstrap samples of the data (box-plot) and the reference model,
CiPA v1.0 (red star, Li et al., 2017). Both physiological models A (green squares) and B (orange
circles) are shown for comparison. The horizontal red dashed line indicates the maximum RMSD of
bootstrapped samples of the data Grey lines/markers on each panel are the binding models that are
ruled out through the RMSD comparison (above the red dashed line)—implausible models.
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1995; Kamiya et al., 2008; Stork et al., 2007) with slow binding rates (Li et al., 2017), only Models 7, 8
(variants of the independent open and inactivated binding model) and Models 6, 10–13 (variants of
flexible-trapping models) were able to explain its drug effect as well as the bootstrap samples of the
data, although a few more non-trapping models were merely marginally ruled out. For verapamil,
a non-trapped drug (Zhang et al., 1999), our approach successfully disqualified all simple-trapping
models (Models 4, 5, 5i, and 9), as well as the conductance blocking and the all-state binding models
(Models 0a and 0b). However, it left the non-trapping models (Models 1–3, 7, and 8) and the flexible-
trapping models (Models 6, 10–13) as plausible candidates for the binding mechanism.

Figure 4 presents a summary of the binding models with physiological model A which gave plausible
fits to the experimental data (shown in green); a summary for those with physiological model B
are provided in Supplementary Figures, the results were very similar with only minor differences for
cisapride, ibutilide and loratadine. We observed no obvious pattern between the proarrhythmic risk of
drugs and the type of binding models ruled implausible. A few more non-trapped drugs were identified
simply based on the ruling out of the simple-trapping models (Models 4, 5, 5i, and 9) as in the case of
verapamil (Figure 3), such as cisapride (Milnes et al., 2010) and droperidol (Stork et al., 2007; Windisch
et al., 2011). For most of the drugs, multiple binding models were able to explain the observed drug
effects using the experimental data collected through CiPA-Milnes’ protocol.

3.2 Binding rates can be strongly dependent on binding mechanism

Studying drug binding kinetics, such as the binding and unbinding rates, is important for understanding
the drug effects on the channels and predicting behaviour in new situations. Figure 5 shows inferred
binding rate parameters kon, unbinding rates koff , and the Hill coefficients n of the calibrated binding
models. All binding models have kon, koff , and n, apart from the conductance scaling model (Model 0a)
which has only two parameters IC50 and n (Table 1). Models 7–10 have independent binding rates for
the open and inactivated states, giving two kon shown as empty (for open) and filled (for inactivated)
markers; only Model 7 has two (free) koff , shown in the same way, as Models 8–10 have closed-loop
states which reduce one degree of freedom due to microscopic reversibility (Figure 2). The CiPA v1.0
model is shown as red stars; the two physiological models, A and B, are shown together as squares and
circles, respectively, and the observed results remained similar regardless of the physiological model.
The results for all the remaining compounds are shown in Supplementary Figures.

Taking verapamil as an example, the inferred binding rate parameter kon was similar for most of
the successfully calibrated binding models (Figure 3). The two binding rate parameters kon,O (empty
marker) and kon,I (filled marker) for the plausible models—Models 7, 8, and 10—were similar too, and
their average roughly equalled kon of the other models. The similarity suggested that the independence
assumption may be superfluous in this case, because if the two inferred rates were the same, the models
would be equivalent to those without the extra degree(s) of freedom (Models 1, 3, and 6). Similarly,
the unbinding rates koff were similar for all binding models, except the koff,O (empty marker) and koff,I

(filled marker) in Model 6; all of the inferred Hill coefficients n were within the range of 1.3–1.8. It is
worth noting that the koff of Model 12 and the CiPA v1.0 model (the same binding model structure
but under different calibration schemes) shared similar inferred values for verapamil but their k̂on were
not shown due to different units.

For metoprolol, the inferred kon were heavily binding-model-dependent, with a coefficient of vari-
ation (defined as the ratio of the standard deviation to the mean, for the plausible models) of 607%,
as compared to 141% for verapamil. The other two parameters koff and n were similar across the
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Figure 4: Summary of the selected binding models with physiological model A for all compounds
through the RMSD comparison. A binding model (column) is considered to be appropriate for a
compound (row)—a plausible model—if coloured in green, where the RMSD of the model to the
averaged data is either smaller than the RMSD of the bootstrap samples of data or similar to the
CiPA v1.0 model to the averaged data. Model 12 is identical to the pharamcological binding component
in the CiPA v1.0 model. Drugs are sorted according to the training and validation lists, and their
proarrhythmic risks.
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Figure 5: Binding rate parameters kon (top row), unbinding rates koff (middle row), and the Hill
coefficients n (bottom row) of the calibrated binding models for two example compounds: verapamil
(left column) and metoprolol (right column). Both physiological models A (green squares) and B
(orange circles) are shown for comparison. Models 7–9 have independent binding and unbinding rates
for open and inactivated states; filled squares/circles are the rates for the inactivated states. The
models in grey are implausible models ruled out through the RMSD comparison. Model 12 is identical
to the pharmacological binding component in the CiPA v1.0 model (red star). k̂on is not shown for
Model 12 and CiPA v1 due to different units.
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Figure 6: qnet, the net charge carried by currents active in plateau and repolarisation over one beat
of AP (IKr, INaL, ICaL, Ito, IKs, and IK1) at various multiples of Cmax for all binding models with six
example drugs. Here, diltiazem, nifedipine, verapamil, dofetilide, cisapride, and bepridil are shown,
revealing a spectrum of behaviours from the binding models. Dashed horizontal lines indicate the
decision boundaries for the low- (green), intermediate- (blue) and high- (red) risk categories for the
torsade metric score (average qnet at 1–4×Cmax) in Li et al. (2019). The implausible models are shown
as transparent dotted lines, and the CiPA v1.0 model is shown as black dashed lines.

calibrated binding models. Unlike verapamil, the inferred koff of Model 12 and the CiPAv1.0 model
were inconsistent, using the same set of experimental data but with different calibration schemes; see
also mexiletine in Supplementary Figures. The differences in the inferred parameters may raise ques-
tions about the calibration data and the complexity of the model structure used, leading to potential
parameter unidentifiability issues (Whittaker et al., 2020, see also Discussion).

3.3 qnet with different binding mechanisms diverges at higher drug concentration

Thus far, we compared the binding models of hERG when calibrated to voltage-clamp experimental
data for various compounds. Here, we show the results of our investigation on the impacts of these
binding models on APs and risk simulations (§ 2.4), whilst accounting for multi-channel effects, fol-
lowing Li et al. (2019). Figure 6 shows the metric qnet at various Cmax levels for all binding models,
with implausible models shown with dotted lines. The torsade metric decision boundaries for the low-
(green), intermediate- (blue) and high- (red) risk categories in Li et al. (2019) are indicated as dashed
horizontal lines for reference. Various degrees of qnet spread were observed across the binding models
for different compounds.

For example, diltiazem is a strong ICaL blocker relative to its IKr effects, therefore the drug effect
on APs measured through qnet reflects mostly the drug block of ICaL and the effects of different
IKr binding models are insignificant. Nifedipine and verapamil are also multi-channel blockers of
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ICaL and IKr, with similar block levels for each current. However, the uncertainty in their resulting
qnet predictions were drastically different—nifedipine showed tight qnet predictions across the binding
models, whilst verapamil produced a wide spread. Figure 6 (bottom row) also shows three more
examples: dofetilide, cisapride, and bepridil. These compounds are almost pure IKr channel blockers
at these concentrations. Again, they showed inconsistent spread of qnet predictions from the plausible
binding models, demonstrating the importance of identifying the correct binding mechanisms or at
least narrowing down the possibilities.

Furthermore, in general, we also observed an increasing spread of the qnet predictions from plausible
binding models at higher Cmax levels; verapamil is one of the most obvious examples. This phenomenon
showed the differences between the binding mechanisms were amplified with higher concentrations of
the drug, and at the top concentrations verapamil spanned all risk categories. However, the torsade
metric uses only 1–4×Cmax of qnet—the metric that was used to train the classification model (ordinal
logistic regression model) for producing the decision boundaries of the risk categories, and we examine
risk predictions in this range in the next section.

3.4 Binding mechanisms can result in substantial uncertainty in torsade risk

Figure 7 (left) shows the torsade metric predictions of all binding models with physiological model A
for all compounds. The drugs are sorted according to their proarrhythmic risk categories and are split
into training and validation lists (Li et al., 2019); the same decision boundaries as Figure 6 are shown
as dashed vertical lines, for the low- (green), intermediate- (blue) and high- (red) risk categories.

The torsade metric predictions for the same compound resulted in a large variation—indicating high
uncertainty in the proarrhythmic risk prediction—due to different binding mechanisms. However, it is
worth emphasising that these plausible binding models were able to explain the observed experimental
data of the compounds either better than the bootstrap samples of the data or as well as the CiPA v1.0
model, therefore the acquired experimental data were not able to resolve the resulting uncertainty. The
reference model, CiPA v1.0, is shown as circles, and the conductance scaling model, Model 0a, is shown
as squares; unexpectedly, Model 0a, which had the worst performance during the calibration process
(Figure 4) and was ruled out in most cases, did not cause any obvious outlying torsade metric prediction
(cf. the extreme RMSD values of Model 0a in Figure 3), and in fact it was usually not the one giving
the predictions at the extremes, showing the nonlinearity in the relationship between the calibration
and the torsade metric prediction. Also, interestingly, the degree of variation tended to be larger for
drugs in higher proarrhythmic risk categories, for both training and validation drugs, perhaps because
hERG block was more dramatic in these compounds (see Discussion).

The corresponding AP predictions for some of the drugs at 4×Cmax are shown in Figure 7 (right).
In general, as expected, a strong AP prolongation—longer AP duration—correlated with a high tor-
sade metric risk category: the shortest AP duration for the low-risk category in green, followed by
intermediate in blue, and then the longest AP for high risk in red. The plausible binding models can
result in metric predictions with high uncertainty, even spanning multiple risk categories; for example,
domperidone predictions span all three risk categories.

3.5 The effect of hERG physiological model on risk classification is subtle

Finally, we compared the effects of the choice of the IKr physiological model (Figure 1) in predicting the
torsade risk classes. The “O’Hara-Rudy CiPAv1.0” model (Dutta et al., 2017) had hERG physiological
model A replaced with physiological model B (solid lines, Lei et al., 2019b,a), the IKr maximum
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Figure 7: The torsade metric predictions, the mean qnet of 1–4×Cmax, of all binding models with
physiological model A for all compounds, and the corresponding AP predictions for seven example
drugs. (Left) Drugs are sorted according to their proarrhythmic risk categories. Dashed vertical
lines indicate the CiPA v1.0 decision boundaries for the low- (green), intermediate- (blue) and high-
(red) risk categories (Li et al., 2019). The CiPA v1.0 model is shown as circles, and the conductance
scaling model, Model 0a, is shown as squares. (Right) The AP predictions of dofetilide, terfenadine,
diltiazem, vandetanib, domperidone, pimozide, and nifedipine at 4×Cmax are shown, revealing a range
of different behaviours from the binding models, indicated with the same colour code as shown on the
left. The implausible models are shown as transparent dotted lines, and the CiPAv1.0 model is shown
as black dashed lines. The drug-free (control conditions) model is shown as grey dotted lines.
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conductance was re-calibrated to match the APD90 of the CiPAv1.0 AP model (dashed lines, Li et al.,
2017), as shown in Figure 8A (blue lines). The IKr within the two AP models, shown as orange
lines, reveals differences in the dynamics of the two hERG physiological models. Although the total
charge carried by the two IKr models is similar (0.190C/F and 0.144C/F for A and B, respectively),
physiological model B has a smaller current during the early phase of the AP—depolarisation to
plateau—and plays a more important role during repolarisation. The two IKr physiological models
show a similar overall transition between the states (Figure 8A): starting from mainly the closed
state(s) to the inactivated state(s) during depolarisation/plateau before occupying the open state and
back to the closed state(s).

Training the ordinal logistic classification model to the torsade metric of the training drugs for all
the plausible binding models adjusted the risk category thresholds to be 0.0575C/F and 0.0484C/F

for separating the low-risk category from intermediate/high and the high-risk category from interme-
diate/low, respectively. The shift in the boundaries was consistent with the change in the net charge
carried by the physiological model B (and alteration to AP shape which also affects other currents)
which resulted in a new control value of qnet. The two new decision boundaries are indicated as dashed
lines in Figures 8B and C. Replacing the physiological model of IKr still produced a similar trend for
the drug risk categories as we saw in Figure 7. Although some of the drugs, such as bepridil, were
clustered closer to the new decision boundaries. This could result from the new IKr model, the choice
of calibration protocol, as well as the choice of the metric, all of which were designed for CiPA v1.0.

4 Discussion

In this study, we have designed a set of pharmacological binding models for the hERG channel. After
selecting a subset of plausible binding models through calibration to the voltage-clamp electrophysiol-
ogy data under CiPA-Milnes’ protocol, we have compared their effects, as well as the effects of having
different hERG physiological models, on proarrhythmic risk predictions.

Our pharmacological binding models of hERG accounted for most of the plausible mechanisms by
which a compound might bind to the hERG channel. The choice of these models has covered some of
the literature binding models of hERG. For example, our simple binding models (Models 2, 2i, and 7)
and trapping models (Models 5, 5i, and 9) are similar to models referred to as “unstuck” and “stuck”,
respectively, in Gomis-Tena et al. (2020). Models 0a, 7 and 11 were used in Windley et al. (2016) to
study the effects of compounds such as cisapride.

In Figures 3 and 4, we demonstrated that our approach can currently be used to distinguish some
of the simpler binding mechanisms for some compounds, such as terfenadine and verapamil, consis-
tent with the literature. It was also able to highlight certain similarities between some compounds
such as bepridil (Kamiya et al., 2006; Pareja et al., 2013) and terfenadine (Stork et al., 2007) where
only flexible-trapping models were deemed plausible to explain the observed data; indeed, studies
with specifically designed voltage protocols consider these two compounds to be trapped slow-binders
(Kamiya et al., 2008). Also, our approach was able to highlight compounds, such as tamoxifen, lorata-
dine, and nitrendipine, where none of the models (not even the CiPA1.0 model) were able to fit the data
satisfactorily. On closer inspection (Supplementary Figures) the data of loratadine, and nitrendipine
showed a slight increase of the (percentage) current over time during the 0mV pulses, raising poten-
tial data quality issues (Lei et al., 2020a) or the need for methods to account for inadequacy of the
models (Lei et al., 2020b) and/or new (un)binding mechanisms to explain this observation; whilst for
tamoxifen, there was a more obvious data quality issue for one of the concentrations. In Supplementary
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Figure 8: Effects of hERG physiological model B in predicting the torsade metric. (A) Comparison
of AP, IKr, and state occupancy using the two hERG physiological models A (dashed lines) and B
(solid lines). (B) The qnet metric at different Cmax levels for all binding models with physiological
model B for dofetilide, terfenadine, and diltiazem. (C) The torsade metric predictions of all binding
models with physiological model B for all compounds. Dashed vertical/horizontal lines indicate the
new decision boundaries for the low- (green), intermediate- (blue) and high- (red) risk categories, using
an ordinal logistic regression model.
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Figures, we also included the results of fitting all the binding models whilst assuming the Hill coefficient
(number of binding sites) to be n = 1. However, in this case, most of the binding models failed to fit
to many of the compounds—being classified as implausible models—suggesting the importance of the
extra degree of freedom provided by the Hill coefficient in explaining these observations, although we
do not eliminate the possibility of this having been caused by some experimental artefact resulting in
a drift/rundown that was mistaken for non-saturating or more quickly/slowly saturating hERG block.

Ideally, we would like the calibration data to contain enough information to rule out as many
binding models as possible. We can use the approach presented in this study to objectively and quan-
titatively describe a compound’s binding mechanism instead of qualitatively classifying the compound
as “trapped”, “binding to open state”, etc., as well as to predict future behaviour in new situations,
hERG mutations in patients, etc. However, we observed that the data elicited with CiPA-Milnes
protocol, which was originally designed to differentiate between trapped and non-trapped compounds
(Milnes et al., 2010), were not able to distinguish between the possible binding mechanisms, or indeed
whether trapping occurs, for all compounds (Figure 3). It therefore suggests the need for designing
better, richer experimental protocols for model calibration and selection, for instance gathering data on
block onset at different voltages (Lee et al., 2019; Gomis-Tena et al., 2020), overcoming the difficulties
in measuring some timecourse of block (Windley et al., 2017), whilst the protocols may also need to
be suitable for fast- and slow-binding compounds that bind via multiple mechanisms.

The model structure is not only useful for identifying the binding mechanisms; the inferred model
parameters, such as binding/unbinding rates, for the plausible pharmacological binding model(s) can
be used as a proxy to quantitatively assess the binding behaviour and dynamics. However, we showed
that, with the limitations of the calibration data, not all plausible models recover the same binding
and unbinding rates, although their ratios, the dissociation constants koff/kon of the models, were more
consistent (Figure 5 and Supplementary Figures). This leads to a more complicated interpretation of
the binding properties. Without being able to identify the correct binding mechanism(s), we would
not be able to study the true binding/unbinding rates of the compound. Moreover, for more complex
pharmacological models, the inferred parameters may even be subject to the calibration scheme and
procedure: e.g. the inferred unbinding rate koff of Model 12 and CiPA v1.0 were inconsistent (Figure 5),
although our Model 12 gives lower RMSDs (Supplementary Figures). The different optimal parameters
in CiPA v1.0 versus Model 12 fits could be due to the use of a different objective function—a tailored
weighted sum of squares of residuals, and based on fewer optimisation runs which could make local
rather than global optima more likely (Li et al., 2017). We note that this is not the same unidentifi-
ability issue between, in our notation, k̂on and EC50 discussed in Li et al. (2019), suggesting this is a
difficult optimisation problem. Our findings emphasise the need for designing better experiments when
parameterising complex models (Whittaker et al., 2020).

In Figure 4, we observed that Model 0a was not classified as a plausible model for most of the
compounds, and in fact the goodness of fits were inadequate and poor (Figure 3). Yet, the torsade
metric predictions by Model 0a were not dissimilar to the other models (Figure 7, see also Mistry, 2019;
Han et al., 2019), which was likely due to the difference between using transient data (Milnes’ protocol)
and predicting steady-state (qnet/torsade metric) conditions (Farm et al., 2023). However, we believe
the torsade metric predictions of Model 0a were acceptable only because of the steady-state nature of
the metric. If Model 0a was used to predict transient APs under certain changes of conditions, then
the trapping effects would be neglected.

In Figure 7, we also noticed that the degree of variation tended to be larger for drugs in higher
proarrhythmic risk categories. This phenomenon was thought to be due to the multi-channel effects,
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which either compensate for the effects of different hERG binding mechanisms or make them insignifi-
cant. However, if such an analysis was applied to other types of current, such as ICaL, etc., it may result
in a similar level of uncertainty in their binding mechanism, leading to a higher level of uncertainty in
the risk predictions than we observed (Figure 7) for compounds that mainly block e.g. ICaL (diltiazem
and nifedipine). Nonetheless, such an observation also implies that it is likely to be more important
to determine the correct hERG binding mechanism when predicting drugs with higher proarrhythmic
risk. Also, given some of the risk prediction spanned multiple risk categories, we advocate efforts to
reduce the uncertainty. Overall, the results highlight the importance of the details of hERG binding
mechanisms.

Furthermore, we have studied the effects of hERG physiological models on proarrhythmic risk
predictions (Figures 7 and 8). To choose between the two hERG physiological models (Figure 1), since
the calibration data were gathered using cell lines expressing hERG1a, we expect that physiological
model B, designed to be a hERG1a model, could capture the drug effects better. Yet, since the
CiPA v1.0 model and the torsade metric were optimised and designed with physiological model A,
which was supposed to capture the native IKr with hERG1a/1b channels (Jones et al., 2004), we may
expect it to predict these risk metrics better. We could fit the hERG1a data with physiological model B
to obtain the binding parameters, then apply these binding parameters to physiological model A to
predict changes to native IKr and clinical risk. However, it would perhaps be more convincing to
directly perform voltage-clamp experiments on hERG1a/1b cell lines (Ríos-Pérez et al., 2021) when
calibrating these pharmacological binding models, as compounds with differing affinities for hERG1a
and 1b have been observed (Abi-Gerges et al., 2011).

Finally, to our knowledge, this is the first study that attempts to address the question of whether
we need a complex pharmacological model that attempts to nest most/all of these binding mechanisms
or a set of multiple possible simpler pharmacological models to perform better proarrhythmic risk
predictions. In theory, if parameter unidentifiability were not an issue, the two wings should arrive at
the same conclusion—for example, when modelling an untrapped compound, the transition rates to
the trapping component of the complex model would approach zero, and the non-trapping (simpler)
model would be selected as the only plausible model. However, it may be better to use simpler models
given the difficulty of eliciting information-rich data for calibrating complex binding models leading
to potential parameter unidentifiability issues (Whittaker et al., 2020), and the inevitable presence
of some model discrepancy (Lei et al., 2020b) and residual experimental artefacts (Lei et al., 2020a).
Pragmatically, based on our results, we would suggest to select and use all the plausible simpler models
for prediction as demonstrated here—a type of ensemble model prediction which provides an estimate
of uncertainty due to model discrepancy (Murphy et al., 2007; Tebaldi and Knutti, 2007; Parker, 2013).

In conclusion, this study has developed an approach to analyse a set of possible pharmacological
small molecule binding models of hERG that is effective in assessing their impacts, as well as the impact
of different physiological IKr models, on the proarrhythmic risk predictions. Determining the details
of binding mechanisms, perhaps through the design of an improved calibration protocol, is crucial for
mitigating the induced, substantial uncertainty in risk predictions for some compounds.

Data Availability Statement
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