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Beta-cell hubs maintain Ca2+ oscillations in human and mouse islet simulations
Chon-Lok Lei a,b, Joely A. Kellard c, Manami Harad, James D. Johnson e, Blanca Rodriguezb, and Linford J.
B. Briant b,c

aDoctoral Training Centre, University of Oxford, Oxford, UK; bDepartment of Computer Science, University of Oxford, Oxford, UK; cOxford
Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK;
dDepartment of Medicine, The University of Chicago, Chicago, USA; eDepartment of Cellular and Physiological Sciences, Diabetes Research
Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada

ABSTRACT
Islet β-cells are responsible for secreting all circulating insulin in response to rising plasma glucose
concentrations. These cells are a phenotypically diverse population that express great functional
heterogeneity. In mice, certain β-cells (termed ‘hubs’) have been shown to be crucial for dictating
the islet response to high glucose, with inhibition of these hub cells abolishing the coordinated
Ca2+ oscillations necessary for driving insulin secretion. These β-cell hubs were found to be highly
metabolic and susceptible to pro-inflammatory and glucolipotoxic insults. In this study, we
explored the importance of hub cells in human by constructing mathematical models of Ca2+

activity in human islets. Our simulations revealed that hubs dictate the coordinated Ca2+ response
in both mouse and human islets; silencing a small proportion of hubs abolished whole-islet Ca2+

activity. We also observed that if hubs are assumed to be preferentially gap junction coupled, then
the simulations better adhere to the available experimental data. Our simulations of 16 size-
matched mouse and human islet architectures revealed that there are species differences in the
role of hubs; Ca2+ activity in human islets was more vulnerable to hub inhibition than mouse
islets. These simulation results not only substantiate the existence of β-cell hubs, but also suggest
that hubs may be favorably coupled in the electrical and metabolic network of the islet, and that
targeted destruction of these cells would greatly impair human islet function.
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Introduction

Pancreatic β-cells have a central role in type 2
diabetes mellitus (T2DM) pathophysiology.1,2

These islet cells are responsible for secreting insu-
lin in response to rising plasma glucose concentra-
tions. Robust, islet-wide oscillations in
intracellular Ca2+ are required for glucose-stimu-
lated insulin secretion.3,4 These oscillations are
highly synchronized, due to gap junction (GJ)
coupling between β-cells.5-7 The nature of these
oscillations depends on the proliferative,8

developmental9,10 and differentiated11,12 state of
the cell. Multiple animal models of diabetes have
also demonstrated that the impaired insulin secre-
tion characteristic of this disease, is due, in part, to
dysfunctional Ca2+ oscillations,13-18 with studies
on human β-cells corroborating this finding.19-21

These Ca2+ oscillations drive pulsatile insulin
release22 – a secretory pattern that enhances

hepatic insulin action,23 protects against insulin
resistance,24 and is lost in T2DM.25-28 To under-
stand how these Ca2+ oscillations become defective
in T2DM, it is important to first understand how
an islet generates and maintains these oscillations.

In the heart, the sinoatrial node contains spe-
cialized myocytes that coordinate the Ca2+ waves
necessary for initiating a cardiac cycle.29 A similar
system has long been postulated to exist in the
islet, whereby specialized β-cells generate and
pace the Ca2+ oscillations necessary for insulin
secretion.30-32 Recently, Johnston et al.33 demon-
strated, by using functional cell mapping and
optogenetics, that certain β-cells (termed ‘hubs’)
are indispensable for the maintenance of Ca2+

activity in the islet. Silencing of these cells revealed
that inhibition of a single hub cell could reduce
Ca2+ activity in the islet network. These cells con-
stitute 1-10% of the islet; therefore, the activity of
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the islet is highly dependent on a small proportion
of β-cells. They reported that these cells: are highly
metabolic, due to high glucokinase protein (GCK)
expression; have reduced expression of sarcoplas-
mic reticulum Ca2+/ATPase (SERCA2) and insulin
content; and are transcriptionally ‘immature’ due
to the low expression levels of signature β-cell
transcription factors (e.g. Pdx1). Such cells could
therefore be more susceptible to both pro-inflam-
matory and glucolipotoxic insults in T2DM,8,9,34,35

which would ultimately result in whole-islet failure
and impaired insulin secretion.

The findings of Johnston et al.33 are impressive
and convincing, but, like all studies, their work
was not without limitations. Their imaging meth-
odology consisted of recording Ca2+ oscillations in
all β-cells in a 20 µm confocal plane. In a spherical
islet, this would typically be the first two layers of
cells on the surface of the islet, amounting to ~50-
100 cells, or ~5-15% of all β-cells in the entire
islet36; hence, the conclusions of the study are
limited to the ‘imaged plane’, and do not extend
to the whole islet. In particular, it is not clear if
hub inhibition influences Ca2+ activity in the
entire islet, or just Ca2+ activity in the imaged
network. Secondly, to allow selective inhibition of
identified hubs, Johnston et al.33 used a transgenic
mouse line that expressed halorhodopsin in β-cells
- an approach that would be difficult to implement
in human islets. How, then, do these findings in
mice translate to human islets? It is important to
carefully consider this question, because mouse
and human islets display different β-cell Ca2+

dynamics; mouse β-cells display islet-wide syn-
chrony in response to glucose, whereas synchrony
in human β-cells is constrained to localized
subpopulations.37 These differences likely stem
from the differences in human and mouse islet
architectures: mouse islets have a highly connected
β-cell core, whereas β-cells in human islets occur
in distinct clusters.38-40

Computational modeling offers a suitable and
valuable paradigm for investigating the role of
hubs in human islets. In this study, we con-
ducted parallelized simulations of computational
models of mouse and human islets. These mod-
els displayed detailed morphological features
based on 3D confocal reconstructions of
islets.36,41 We then used these models to explore

the experimental findings of Johnston et al.33 In
particular, we ask the question: can endowing a
model of a mouse islet with a few (10%) highly
metabolic β-cells recapitulate the findings of
Johnston et al.33? We explored this question in
an impartial and objective manner by consider-
ing parameter uncertainty, cell-to-cell variability,
repeating simulations for different random seeds
and constructed models for a number of mouse
and human islet architectures.

Computational methods

Model of β-cell membrane potential and
intracellular Ca2+ dynamics

There are many models of β-cells, which have been
reviewed by Pedersen.42 We used the ‘Cha-Noma
model’43 because this model gives a detailed
description of membrane potential (VmÞ and intra-
cellular Ca2+ Ca2þ½ �i

� �
dynamics. The underlying

equations can be found therein. In brief, the model
of β-cell Vm is described by:

Cm
dVm

dt
¼ � ICaV þ IKRPM þ ISOC þ IbNSCð
þ IKDr þ IKCa þ IKATP þ INaK
þ INaCa þ IPMCA þ Icoup þ INpHR

�
(1)

where Cm is the cell capacitance and IX is the
electrical current due to channel type X. Full
details of the functional forms and parameters
for each of these currents can be found in Cha
et al.43 Here, we have added two currents. INpHR is
the halorhodopsin (NpHR) current; this was
employed by Johnston et al.33 to inhibit hub cells.
Icoup is the current due to GJ coupling of the β-cell
with a spatially-contacting β-cell.

The equation describing Ca2þ½ �i dynamics was:

d Ca2þ½ �i
dt

¼ � f
v

P
ICa

2F
� JSERCA þ Jrel

� �
(2)

where F is the Faraday constant, f is the cytosolic
Ca2+ buffer strength and v is the cell volume.

P
ICa

is the total transmembrane Ca2+ current.
Endoplasmic reticulum (ER) Ca2+ dynamics are
also included, via the flux terms for uptake by the
ER Ca2+-ATPase JSERCAð Þ and ER Ca2+ release Jrelð Þ.
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The parameter values can be found in the model
code. These were identical to the original model by
Cha et al.43, aside from the modifications
described in detail below.

Spatial configuration of islet models

The 3D structures of 8 human (4 donors) and 8
mouse (4 mice) islets were provided from a
previous study.36 These islets were size-matched
on the number of β-cells across the species. For
each islet structure, we constructed a mathemati-
cal model of the islet that included all the β-cells
and the necessary GJ connections between these
cells (S1 Figure). The methodology for this pro-
cess has previously been described in detail.41 The
experimental dataset provided the x; y; zð Þ coor-
dinates of the DAPI-stained nucleus of each
insulin+ cell in the islet; namely, the spatial loca-
tion of each β-cell in the islet. The Cha-Noma
model of a β-cell was then placed at the x; y; zð Þ
location of each β-cell. What remains to be deter-
mined is which cells are in spatial contact with
one another, and therefore form functional (e.g.
GJ) connections.

Two β-cells, with coordinates X1 ¼ x1; y1; z1ð Þ
and X2 ¼ x2; y2; z2ð Þ, were considered to be spa-
tially in contact if

jjX1 � X2jj< dthr (3)

where jj � jj is the Euclidean distance and dthr ¼
17:5 µm. This threshold distance was selected
because (a) it is approximately the diameter of a
β-cell (~10-12 µm44,45) and (b) it yields on average
8-10 spatial contacts per cell, which lies within the
number of contacts according to the thinnest
(6 contacts) and densest (12 contacts) regular
sphere packing algorithm for spheres of diameter
12 µm. For each islet, we computed the number of
spatial contacts for each β-cell in the islet, and
generated a histogram of these data for that islet.

Determining gap junction connections in islet
model

If two β-cells were deemed spatially in contact, a
non-zero GJ conductance was assigned to electri-
cally couple them. The GJ conductance was picked

from a Gaussian distribution with mean μ ¼ 50 pS
and standard deviation of σ ¼ 0:7μð Þ pS. This uni-
tary strength is in good agreement with recordings
in intact mouse islets (50–120 pS unitary strength-
46) Given that each β-cell in our mouse islet archi-
tectures had on average 10 GJ connections
(Figure 5G), the total GJ conductance for each β-
cell would range between 150 and 850 pS
(10� μ� σð Þ). This total GJ conductance is com-
parable to recordings from intact mouse islets
(total GJ conductance 1200 pS.,47) These GJ con-
ductance values are also in agreement with pre-
vious simulation studies in cubic clusters of mouse
β-cells.48

We also considered another situation,
whereby the GJ conductance followed a bimodal
distribution (see Defining hubs and non-hubs
below). In both cases, we assumed that the GJ
current was linearly related to the difference in
membrane potentials, as in previous models of
coupled β-cells.49,50

Defining hubs and non-hubs

Johnston et al.33 reported that hubs are highly
metabolic compared to non-hubs, due to twice
the GCK expression. To mimic this doubling of
glucokinase expression in hubs, we made hubs
more sensitive to glucose. To impose this assump-
tion, we assumed that in simulations of high glu-
cose, glucose for hubs was higher than glucose for
non-hubs. In particular, in high glucose, the glu-
cose in hubs was set to 11 mM Ghub½ � ¼ 11ð Þ, and
glucose for non-hubs was set to Gnon�hub½ �. This
assumption is a valid representation of this experi-
mental finding, as glucose transport is not rate-
limiting for β-cell function.51 An appropriate value
for Gnon�hub½ � was to be determined, and was
investigated by considering different distributions
for Gnon�hub½ � and comparing the output of the
model with the available experimental data. We
considered Gnon�hub½ � to follow a uniform distribu-
tion over an interval ½Gnon�hubð �,U X;Yð ÞÞ mM
(U X;Yð ÞÞ, where X and Y were to be determined.

Johnston et al.33 reported that hubs constitute
1-10% of the islet. We therefore assumed that 10%
of the cells in the islet were highly metabolic (and
therefore had a high glucose condition defined by
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Ghub½ �). The remaining 90% of cells had a high
glucose condition defined by Gnon�hub½ �.

Using photo-labeling of hubs, Johnston et al.33

demonstrated that hubs have lower protein expres-
sion of SERCA2. To explore how this may effect
hub and whole-islet function, we explored how
altering the flux term for SERCA in the Cha-
Noma model (JSERCA) influenced the output of
the islet model:

JSERCA ¼ PSERCA
½Ca2þ�i2

½Ca2þ�i2 þ K2
(4)

Specifically, we reduced the maximal flux (PSERCA),
which has a default value of 0.096 amole/ms.

Finally, we also considered an addition assump-
tion; that hubs were preferentially GJ coupled to
all cells that they are in spatial contact with. The
justification for this assumption was as follows:

(1) The insulin content of a β-cell is closely
related to the extent to which the cell is GJ
coupled. In particular, cells with less insulin
exhibit larger GJ connectivity.52,53 This
would suggest that hubs have larger GJ con-
nectivity, as they express less insulin.33

(2) The extent of Ca2þ½ �i waves in islets is GJ-
dependent.54

(3) Recent data have demonstrated that highly
metabolic cells are more efficient at recruiting
Ca2þ½ �i waves in neighboring cells.55 As hub
cells are highly metabolic,33 this would imply
that hub cells may be preferentially connected.

(4) Recordings of GJ conductances between β-
cells in intact islets have demonstrated that
the distribution of connectivity is bimodal,
with some cells exhibiting stronger connec-
tivity than other cells.56

We therefore considered two circumstances:
(1) hubs and non-hubs have GJ conductances
picked from the same unimodal Gaussian distri-
bution (N 20; 14ð Þ pS), and (2) hubs are prefer-
entially GJ coupled. We imposed (2) by
introducing a bimodal distribution in the GJ
conductance parameter, picking hub GJ conduc-
tances from N 10; 2ð Þ pS and non-hub GJ con-
ductances from N 50; 10ð Þ pS.

Cell-to-cell heterogeneity and parameter
uncertainty

β-cells are known to exhibit highly heterogeneous
electrophysiological properties.57-59 Within an islet
model, we picked all maximal conductance para-
meter values, for both hubs and non-hubs, from a
normal distribution with mean value μ equal to
original parameter value given in Cha et al.43 and
standard deviation equal to 20% of the mean value
σ ¼ 0:2μð Þ. This allowed us to account for varia-
bility and parameter uncertainty in our simulation
results.

Simulation protocol

To mimic the experimental condition used in
Johnston et al.,33 islet models were simulated
under high glucose, followed by inhibition of a
selected population of cells (hubs or non-hubs),
and then recovery. Inhibition of β-cells was
achieved by clamping the membrane at
−100 mV, mimicking the optogenetic silencing of
β-cells observed in Johnston et al.33

All models were coded in the simulation envir-
onment NEURON under the Python interface
using CVODE and a 25 µs time-step.60

Simulations were conducted in parallel using
MPI for Python (mpi4py) on ARCUS-B
(Advanced Research Computing, University of
Oxford). Simulation of an islet with ~1000 β-cells
for 200 sec took ~10 hours. Simulation videos are
provided as supplementary material and simula-
tion code is available on a GitHub repository
https://github.com/chonlei/bHub_sim

Analysis of data

All data were imported into MATLAB v6.1 (2000;
The MathWorks, Natick, MA, USA) for plotting
and analysis. For all β-cells in a simulated islet, the
average Ca2þ½ �i response during each experimental
condition was quantified (e.g. during hub silen-
cing). Raster plots were generated of the
Ca2þ½ �i data by the same method described by
Johnston et al.33 In particular, the Ca2þ½ �i signal
for each β-cell was binarized by using a threshold
(0.2 µM; 40% of maximal Ca2þ½ �i following data
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normalization). Ca2þ½ �i activity was represented as
a function of the number of hubs (or non-hubs)
inhibited, and fit with a sigmoid function (all

R2>0.9). Ca2þ½ �i activity was quantified as either
the summed Ca2þ½ �i activity or the maximum
amplitude of Ca2þ½ �i activity, as a function of
Ca2þ½ �i activity under the baseline (no inhibition)
condition.

All results are reported as mean ± SEM.
Statistical significance was defined as p < 0.05.
All statistical tests were conducted in Prism 7.02
(GraphPad Software, San Diego, CA, USA).
Significance was assessed with a paired or
unpaired t test.

Results

Exploration of how to define non-hubs in islet
models

A model of a mouse islet was constructed and
simulated under high glucose conditions
(Figure 1, S1 Video). The islet model consisted of
750 β-cells, with 10% hub cells. We first explored
in this model how non-hubs should be defined in
order to best recapitulate the experimental data of
Johnston et al.33 We did this by comparing the
model output for different distributions over
Gnon�hub½ � to available experiment data from
Johnston et al.33; in particular, that inhibition a
single hub cell in a population of ~50-100 imaged
cells (1-2% of the imaged β-cells) could abolish
Ca2þ½ �i activity in the network. To explore how
to define Gnon�hub½ � for non-hubs, we sampled
Gnon�hub½ �,U X;Yð Þ, for different intervals X;Y½ �
(Figure 1A-D). When Gnon�hub½ �,U 6:5; 7:5ð Þ, the
islet produced robust, islet-wide oscillations in
Ca2þ½ �i (Figure 1A). However, inhibition of a
large fraction of hubs (IC50 = 7.6% of all β-cells
in the islet) was required to silence the Ca2þ½ �i
oscillations (Figure 1C and D). This is not in
agreement with the experimental data of
Johnston et al.33 If Gnon�hub½ �,U 6; 7ð Þ, the
islet also produced robust Ca2þ½ �i oscillations
(Figure 1B). Moreover, the model better recapitu-
lated the experimental data of Johnston et al.33;

whole-islet Ca2þ½ �i activity was strongly suppressed
by inhibition of a small number of hubs (IC50 =

4% of all β-cells in the islet). We therefore defined
Gnon�hub½ �,U 6:0; 7:0ð Þ, because this produced an
islet model which best adheres to the experimental
data. This distribution over Gnon�hub½ � was adopted
for all islet models from hereon in. This interval
includes the Hopf point for initiation of firing
(6.9 mM), for the original (non-Gaussian-
sampled) parameter values.61

Inhibition of hub cells can abolish whole-islet Ca2
+ activity

A model of a mouse islet was simulated under high
glucose conditions before (Figure 1E), during
(Figure 1F) and after (Figure 1G) inhibition of
hubs or non-hubs (see also S1 Video). Under basal
conditions, the islet model generated highly synchro-
nized Ca2þ½ �i oscillations (Figure 1E). Simultaneous
inhibition of a proportion of these hubs (6% of all β-
cells in the islet) severely disrupted these Ca2þ½ �i
oscillations (Figure 1F). Inhibition of the same num-
ber of non-hubs was not able to induce such a wide-
spread disturbance to Ca2þ½ �i activity. Removing this
inhibition quickly restored the Ca2þ½ �i activity
(Figure 1G).

Reducing SERCA does not increase the
importance of hubs

In addition to being highly metabolic, Johnston
et al.33 reported that hubs have reduced SERCA.
Therefore, on top of our highly metabolic defini-
tion, we next explored the behavior of our model
when SERCA was reduced in hubs (Figure 2).
Specifically, we reduced the uptake of Ca2+ by
SERCA into the ER in the model by reducing the
maximal flux parameter PSERCA. We ran a model
wherein hubs were just highly metabolic
(Figure 2A) and compared it to a model where
hubs were highly metabolic and had 40% reduced
SERCA (Figure 2B). The added definition of
reduced SERCA did not enhanced the influence
of hubs on whole-islet Ca2+ activity. In fact, it
increased the influence of non-hub silencing on
whole-islet Ca2+ activity (Figure 2B). As we
reduced SERCA in a graded fashion (from 100%
to 60% of the default value), there was no obvious
improvement in the influence of hub inhibition on
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during inhibition of hub or non-hub cells. When Gnon�hub½ �,U 6; 7ð Þ mM, hub inhibition strongly suppresses whole-islet Ca2þ½ �i. In
contrast, when Gnon�hub½ �,U 6:5; 7:5ð Þ mM, hub inhibition has little effect on whole-islet Ca2þ½ �i . Mean (E) Ca2þ½ �i for all β-cells in a
mouse islet model, during high glucose condition. Raster plot showing Ca2þ½ �i activity in each β-cell. 3D plot of Ca2þ½ �i for each β-cell in
the islet model at time points (1) and (2). Mean (F) Ca2þ½ �i for all β-cells in a mouse islet model, during hub inhibition and non-hub
inhibition. 45 hub cells or non-hub cells where inhibited simultaneously. Raster plot showing Ca2þ½ �i activity in each β-cell during the hub
inhibition condition. 3D plot of Ca2þ½ �i for each β-cell in the islet model at time points (1) and (2) during hub inhibition. Mean (G) Ca2þ½ �i
for all β-cells in a mouse islet model, during recovery from hub inhibition. Raster plot showing Ca2þ½ �i activity in each β-cell. 3D plot of
Ca2þ½ �i for each β-cell in the islet model at time points (1) and (2). cf. S1 Video.
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whole-islet Ca2+ activity (Figure 2C). For this rea-
son, in what follows we did not impose this extra
definition of hubs.

Hubs are preferentially gap junction coupled in
the islet network

Although these results demonstrate that a small
proportion of hub cells are crucial to whole-islet
Ca2þ½ �i activity, they do not entirely conform to the
experimental results of Johnston et al.33 In particu-
lar, Johnston et al.33 reported that inhibiting a sin-
gle hub cell in a population of ~50-100 imaged cells
(1-2% of the imaged β-cells) could abolish Ca2þ½ �i
activity in the network. In contrast, our simulations
required inhibition of ~6% of the islet cells to
completely silence the islet (Figure 1D). We there-
fore investigated how to improve the model fit to
the experimental data. We postulated that the
model may better adhere to the experimental data
if hubs had strong GJ connectivity. We therefore
explored a situation whereby hub cells exhibited
either the same GJ connectivity as non-hub cells
(‘unimodal’), or stronger GJ connectivity than non-
hub cells (‘bimodal’; Figure 3, S2 Video). In the
unimodal case, inhibiting hubs was ineffective at
silencing the islet until > 5% of the islet was silenced
(Figure 3A-C). Furthermore, silencing non-hub
cells had a similar effect on whole-islet Ca2þ½ �i
activity. These results do not conform to the results
of Johnston et al.33 For bimodal GJ connectivity, the

influence of hubs on whole-islet Ca2þ½ �i activity was
greatly increased (Figure 3D-F). The IC50 (half-
maximal inhibition) was 2.6±0.4% β-cells
(Figure 3E), compared to 5.2±0.4% for unimodal
GJ heterogeneity (p=0.001, Figure 3B).
Furthermore, inhibition of non-hubs was less effec-
tive at ceasing whole-islet Ca2þ½ �i activity
(Figure 3D-F). Therefore, assuming that hubs are
preferentially GJ connected improves the adherence
of the model to the experimental data of Johnston
et al.33 As a result, we adopt this bimodal GJ
assumption from here on in. More importantly,
these simulation data suggest that hubs are prefer-
entially GJ coupled in the islet network.

Hub cells dictate whole-islet Ca2+ activity in a
model of a human islet

We next sought to investigate whether the results of
Johnston et al.33 could be recapitulated in a model of
a human islet (Figure 4, S3 Video). The human islet
model consisted of 1173 β-cells with 10% hubs.
When the hubs where inhibited, whole-islet Ca2þ½ �i
activity was severely disrupted (Figure 4A-C). This
contrasted with inhibition of non-hubs, which did
not disturb whole-islet Ca2þ½ �i activity (Figure 4A-
C). These results were not dependent on the random
seed for the generation of the parameter values
(Figure 4C). Furthermore, the IC50 of inhibition of
the islet was 1.79±0.3% hub cells - significantly less
than in the aforementioned mouse islet model
(p=0.003; Figure 4D). Therefore, the human islet
model was more sensitive to hub inhibition than
the mouse islet model.

Human islet architectures are more sensitive to
hub inhibition

To determine whether this result was consistent
across different islet architectures, we repeated
these simulations for 8 mouse and 8 size-matched
human islet architectures (Figure 5). The size of
mouse islets (1565±90 β-cells) was not significantly
different to human islets (1585±93 β-cells; p=0.12;
Figure 5A), demonstrating that the size-matching of
the islets was effective. Each islet was endowed with
10% hubs and simulated in high glucose. For each
islet, the number of hubs inhibited was progressively
increased and Ca2þ½ �i activity quantified (Figure 5B-
E). A sigmoid was fit to these data, for which an IC50

and slope factor could be calculated (Figure 5B;
R2=0.92±0.03). In mouse islets, the IC50 was 1.41
±0.2%, compared to 0.78±0.8% in human islets
(p=0.008; Figure 5E). The slope factor did not differ
across species (p=0.078; Figure 5F). When we exam-
ined the distribution of the number of spatial con-
tacts between β-cells in human compared to mouse
islets, we observed that themean was larger inmouse
(10.2±1.2 contacts) compared to human (7.9±0.3),
although this difference was non-significant
(p=0.055; Figure 5G). These data suggest that

ISLETS 157



human islet function is more susceptible to hub
disruption than mouse islets, and that this is due to
species differences in islet architecture.

Discussion

In this study we used a computational approach to
investigate and compare the role of β-cell hubs in
generating coordinated Ca2+ oscillations in mouse
and human islets. The aim of this study was not to
demonstrate that hubs are (/are not) a ubiquitous
feature of islets. The aim was to employ an appro-
priate methodology (namely, computational model-
ing) to investigate (a) the validity of the results of
Johnston et al.33 and (b) the potential properties of
hubs. To do this in an objective manner, we made as
few modeling assumptions as possible, picked para-
meters from distributions to mimic experimental β-
cell heterogeneity, repeated simulations for different
random seeds and constructed models for a number
of different mouse and human islet architectures.

Importance of hub cells in whole-islet Ca2+

oscillations

By using high-powered and parallelized comput-
ing, we were able to demonstrate that endowing an
islet with a small proportion of highly metabolic
hub cells could result in the generation of synchro-
nous Ca2+ activity. Furthermore, this activity could
be abolished by inhibiting a few of these cells (~2%
of all β-cells in the islet), demonstrating that β-cell
hubs can dictate the whole-islet Ca2+ response to

high glucose. However, non-hub silencing was also
able to strongly inhibit the islet, which does not
adhere to the data of Johnston et al.33 For this
reason, we explored additional assumptions that
may improve the model fit to the available data.

Hub cells are highly functionally connected

Connectivity between β-cells is heterogeneous, with
certain β-cells exhibiting high connectivity.62-65

Recent data have demonstrated that highly meta-
bolic cells are more efficient at recruiting neighbor-
ing cells.55 Upon glucose stimulation, GJ coupling
between β-cells increases.66 Furthermore, hub cells
express less insulin,33 and highly GJ coupled cells
are known to express less insulin.52,53 Taken
together, these data suggest that hub cells may be
preferentially connected. For this reason, we added
the modeling assumption that hubs are favorably
GJ coupled in the islet network. In particular, we
endowed our model with a bimodal distribution of
GJ connectivity, with hubs exhibiting stronger GJ
connectivity than non-hubs. Interestingly, this
assumption is supported by recordings of GJ con-
ductances between β-cells in intact islets, which
demonstrated that the distribution of connectivity
is bimodal, with some cells exhibiting stronger con-
nectivity than others.56 When we added this
assumption, our simulation data better adhered to
the results of Johnston et al.33 In particular, inhibi-
tion of ~3% of the islet was sufficient to silence the
islet. These data therefore suggest that hub cells
may not just be highly metabolic, but also highly
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GJ coupled. Although experimental and computa-
tional data strongly supports this, further experi-
mental validation/refutation of this assumption
could be conducted.

This could, for example, involve FRAP-based
monitoring of functionally identified hubs64 or
laser capture microdissection of hubs67 followed
by single cell RNA-seq.68

Johnston et al.33 reported that hubs express less
SERCA than non-hubs. Interestingly, adding this
assumption to our models did not improve the
adherence of the models to the experimental data.
These simulation data do not preclude the findings

of Johnston et al.,33 but instead indicate that a reduc-
tion in SERCA protein expression does not simply
imply reduced Ca2+ uptake into the ER. This com-
putational finding warrants a more detailed investi-
gation into which SERCA properties are altered in
hub cells. Computational models would be able to
guide such experimental investigations.

Human islets are more susceptible to hub
disruption than mouse islets

Previous simulation studies have shown that clus-
ters of β-cells are robust against significant
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2.59±0.4% (mean ± SEM). (C) Ca2þ½ �i activity in a mouse islet model as a function of the number of cells inhibited (% of islet). The GJ
conductances in this model are unimodal, with GJ conductances for hubs and non-hubs sampled from a distribution with mean 20 pS.
Either hubs or non-hubs were inhibited and the summed Ca2þ½ �i activity (% of no inhibition) was quantified. (D) Same as in (A) but for all
β-cells in a mouse islet model with bimodal GJ conductances, during hub inhibition and non-hub inhibition. Raster plot showing Ca2þ½ �i
activity in each β-cell during the hub inhibition condition. (E) Same as in (B) but for bimodal GJ conductances, with GJ conductances for
hubs sampled from a distribution with larger mean (50 pS) than non-hubs (10 pS). Either hubs or non-hubs were inhibited and the
resultant Ca2þ½ �i activity amplitude (% of no inhibition amplitude) was quantified. Error bars show the SEM for re-running of both of these
simulations for 6 different random seeds. The hub inhibition simulations have an IC50 of 2.59±0.4% (mean ± SEM). (F) Same as in (B) but
for bimodal GJ conductances, with GJ conductances for hubs sampled from a distribution with larger mean (50 pS) than non-hubs (10 pS).
Either hubs or non-hubs were inhibited and the summed Ca2þ½ �i activity (% of no inhibition) was quantified. Note how silencing non-hubs
has a minimal effect on summed Ca2þ½ �i output. cf. S2 Video.
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perturbations to the islet, including changes to the
architecture and β-cell loss.69 Our results support
this finding, as loss of non-hubs in both mouse

and human islets failed to strongly influence Ca2+

activity. On the other hand, our simulation data
did demonstrate that inhibition of a small number
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of hub cells can greatly impact islet function.
Therefore, it is important to understand how hub
cells may become disrupted. This is especially per-
tinent in human islets, as our simulations revealed
that human islets are particularly sensitive to hub
cell dysfunction.

Human islets are known to consist of clusters
of β-cells, whereas mouse islets have a large,
highly connected core,38-40 an architectural dif-
ference that was reflected in our analysis of the
number of spatial contacts between β-cells in
islets. These structural differences explain why
human islets are more susceptible to hub disrup-
tion than mouse. Interestingly, the characteris-
tics of islets from mouse models of diabetes are
more similar to human islets.70 Therefore, the
reduced insulin output from these strains may in
part result from hubs experiencing a greater
demand in an architecture more sensitive to
hub disruption.

Johnston et al.33 demonstrated that glucotoxic
and glucolipotoxic challenges reduced the propor-
tion of hubs in mouse and human islets.
Therefore, hubs may be specifically targeted dur-
ing pro-inflammatory insults. Our simulation data
show that this would have far-reaching effects on
Ca2+ activity, causing termination of whole-islet
function. Such hub-specific failure may contribute
to T2DM, as hub cells appear to relate to a pre-
viously described β-cell population that are sus-
ceptible to cell death.8,9

Study limitations

To recapitulate the higher GCK expression and
mitochondrial potential in hubs,33 we defined
non-hubs to have a lower glucose than hubs in
our simulations (Figure 1). We explored an appro-
priate value for this parameter by determining
which value produces an islet model that best
adheres to the experimental data. We found that
picking non-hubs to have a glucose value from a
uniform distribution on 6.0-7.0 mM, best repro-
duced the experimental data from Johnston et al.33

However, this does not necessarily adhere to other
available experimental data. In particular, the
threshold for firing in the Cha-Noma model is
~6.9 mM, so approximately 90% of our non-hubs
are silent in high glucose (when in isolation). This is

at odds with data from dispersed β-cells, which
exhibit a reliable and robust oscillatory response
to high glucose.71 However, the mechanical and
enzymatic process of β-cell dispersion may alter
their firing properties, resulting in increased excit-
ability. Furthermore, removing β-cells from their
islet environment may release them from paracrine
inhibition, increasing their excitability.

We used a model of electrical activity in a
mouse β-cell43 to construct models of human
islets. Although models of human β-cells exist-
50,72,73 which capture the different electrophysiolo-
gical properties of these cells compared to rodent
β-cells50,72-75, there is large variability in the qual-
ity, function and donor details of human islets.76-78

Furthermore, the data that these models are based
on uses recordings from dispersed human β-cells
that were cultured in media without the addition
of any serum.50,73,74 It has subsequently been
shown that supplementation of islets with serum
is essential for preserving islet function.79 Given
that human β-cells are known to burst,75,80-83 and
that the Cha-Noma model generates bursting
dynamics, we opted to use the Cha-Noma model
as a reliable proxy for a human β-cell in our
models of human islets. This also afforded a direct
comparison of the influence of islet architecture
between mouse and human. To ensure our models
represented the known cell-to-cell variability, we
picked parameter values from Gaussian distribu-
tions. This resulted in simulations that could cap-
ture the uncertainty in parameter values from
human β-cell recordings.

Finally, we note that we compared inhibiting
hubs to inhibiting randomly-selected non-hubs,
whereas Johnston et al.33 compared inhibiting
hubs to inhibiting cells with the lowest number
of links. This may explain why, in our simula-
tions, inhibiting non-hubs was still relatively
effective at inhibiting the islet. However, we
were unable to conduct such a simulation, as
we were unable to recapitulate the power law
property necessary for identification of such
(low linked) cells. This may be because (a)
the model failed to capture the biological pro-
cesses necessary to recapitulate this property
and/or (b) more sophisticated measure of simi-
larity between cells is required, as has been
conducted for pairs of simulated β-cells.84 We
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note that although power law properties have
been reproduced in previous in silico studies of
islets, this was only during the initial phase of
the glucose response.85 Furthermore, the
impact of hub inhibition was not explored in
these models.

Concluding remarks and future directions

In conclusion, we have demonstrated that endow-
ing an islet model with a small proportion of highly
metabolic β-cells can recapitulate the findings of
Johnston et al.33 This computational finding is
credible because we made as few modeling assump-
tions as possible, considered parameter uncertainty
and cell-to-cell variability, repeated simulations for
different random seeds and constructed models for
a number of different mouse and human islet archi-
tectures. Our simulations revealed that hubs may be
preferentially GJ coupled, allowing them to exert a
powerful influence over whole-islet Ca2+ activity. GJ
coupling between β-cells is essential for islet
function.6,86 The strength of this coupling decreases
with age87,88 and in animal models of diabetes.89,90

Therefore, our simulations predict that a reduction
in GJ coupling would reduce the ability of hubs to
generate whole-islet Ca2+ oscillations, greatly
impairing insulin output. Whether such dysfunc-
tions in hub cells occur in T2DM and contribute
to the impaired insulin secretion observed in this
disease, remains to be seen. However, simulations
of islets will aid our understanding of how these
specialized cells contribute to islet function and the
aetiology of diabetes.
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