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Ordinary differential equationmodels are used to describe dynamic processes
across biology. To perform likelihood-based parameter inference on these
models, it is necessary to specify a statistical process representing the contri-
bution of factors not explicitly included in the mathematical model. For this,
independent Gaussian noise is commonly chosen, with its use so widespread
that researchers typically provide no explicit justification for this choice. This
noise model assumes ‘random’ latent factors affect the system in the ephem-
eral fashion resulting in unsystematic deviation of observables from their
modelled counterparts. However, like the deterministically modelled parts
of a system, these latent factors can have persistent effects on observables.
Here, we use experimental data from dynamical systems drawn from cardiac
physiology and electrochemistry to demonstrate that highly persistent differ-
ences between observations and modelled quantities can occur. Considering
the case when persistent noise arises owing only to measurement imperfec-
tions, we use the Fisher information matrix to quantify how uncertainty in
parameter estimates is artificially reduced when erroneously assuming inde-
pendent noise. We present a workflow to diagnose persistent noise from
model fits and describe how to remodel accounting for correlated errors.
1. Introduction
Ordinary differential equation (ODE) models are used throughout biology, typi-
cally to describe dynamic processes. Amidst a huge range of applications,
ODEs are used to describe the transmission dynamics of infectious diseases
[1]; they can represent the dynamics of enzyme-catalysed reactions [2] and
can explain the formation of action potentials in neurons [3]. In ODE models,
the evolution of a system depends only on its current state and a set of input
parameters, which determine how individual components of the system inter-
act. The parameters of ODE models in biological systems are typically not
directly measurable and must be inferred from data. In this article, we consider
the assumptions underpinning inference of parameters from biological data.

A typical ODE model for modelling a dynamic process may be written:

dx
dt

¼ hðt, x, uÞ, t [ ð0, T�

and xð0; uÞ ¼ x0,
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>; ð1:1Þ
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Figure 1. Causes of autocorrelated noise. (a) ODE model misspecification:
shows how using a logistic model when, in fact, a Gompertz model is correct,
results in autocorrelated noise; (b) and (c) show how an imperfect measure-
ment process can lead to different characteristic residual noise processes: (b)
the measurements are taken using a coarse grid; (c) the measurements are
taken using a fine grid. In all cases, residuals are depicted by black arrows.
The inset plots show representative posterior distributions under different
assumptions about the measurement process.
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where xðt; uÞ [ Rn is the state of the system; u [ Rm are the
parameters of the system; t denotes time; h(t, x, θ) can be a
function of time, state and parameters; and x0 [ Rn is the
initial state.

We suppose that an ODE model is proposed to explain a
dataset: f~yðtiÞgNi¼1, where ~yðtiÞ [ Rl and l≤ n. By fitting the
model to these data, an analyst hopes to recover estimates
of the parameters, θ, which incorporate uncertainty. ODE
models typically do not explain all variation within a dataset
because they are approximations of the underlying processes,
meant only to capture the most dominate characteristics of
variation. Particularly in biology, the measurement of the
system itself is also imperfect: measurement apparatus has
a finite resolution and may provide indirect measures of the
quantity of interest, and human errors may also contribute
noise to observations. Because of these factors, a random
error process is hypothesized to connect noisy observations
with the ODE solution. This may be written as follows:

yðtiÞ ¼ gðxðtiÞÞ þ eðtiÞ, ð1:2Þ

where g :Rn ! Rl allows a measured quantity to be a func-
tion of the ODE solution. In equation (1.2), eðtiÞ is a
random variable that represents both the effects of model
misspecification and measurement noise.

The canonical assumption for the error terms is that they
represent independent and identically distributed (IID)
draws from a normal distribution [4–9]: eðtiÞ �IID N ð0, sÞ,
where σ > 0 characterizes the width of this distribution.
The IID normality assumption is so widespread that it is
typically stated without justification.

The normality assumption may be justified on the basis of
a central limit theorem if it is thought that a series of indepen-
dent or weakly dependent random variables—representing
different characteristics of measurement and misspecification
processes—contribute additively to the overall errors; it may
also be reasonable since the normal distribution emerges
from a disparate range of processes representing measure-
ment imperfections [10, ch. 7]. However, if there is strong
correlation between these constituent parts, then a distri-
bution with heavier tails, such as a Student-t distribution or
a Huber distribution is more appropriate [11].

An IID normal distribution can also be justified by invok-
ing the principle of maximum entropy [10,12]. This principle
roughly states that a probability distribution representing the
outcomes of a process of interest should be chosen to include
as little possible information about a process subject to known
constraints. If only the mean and variance of the outcomes of a
process are known, and there is thought to be zero correlation
between errors, then it can be shown that an IID normal distri-
bution is the probability distribution that makes the fewest
additional assumptions [10, ch. 7]. However, it is unclear
how applicable this is to the error distribution for ODEs,
since we typically know only that the mean of the error distri-
bution is zero, and our empirical examples indicate that the
independence assumption may be an unreasonable null
hypothesis. In particular, if there is thought to be autocorrela-
tion in the noise, then a multivariate normal over the errors is
the distribution with maximum entropy.

There are two general causes of autocorrelation in the
errors: misspecification of the model and poor temporal resol-
ution of the measurement process [12]. In figure 1a, we
illustrate how misspecifying an ODE model can lead to
autocorrelated errors. This figure shows the outputs of two
dynamic models as solid (model A) and dashed (model B)
lines. We suppose that there is no measurement noise and
that the data (arrow tips) is generated by model A. In attempt-
ing to fit these data, suppose model B is mistakenly chosen,
and its best fitting line is as shown in figure 1a. There are mani-
fold ways in which a model can be misspecified: the assumed
functional form governing interactions between variables can
be incorrect; important variables can be left out of the model
entirely; a deterministic model may be used when a stochastic
one is more appropriate; and so on. In this example, any of
these issues could conceivably result in the differences
between model A and model B, and, by choosing model B,
this misspecification results in residuals (shown as arrows)
exhibiting positive autocorrelation.

There is a huge literature devoted to accounting for model
misspecification during inference [13–16], and this remains an
active area of research. In this article, however, we focus only
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on the impact of assumptions around measurement noise,
since, as we demonstrate, these can have dramatic effects on
inference even in the absence of model misspecification. To
exemplify how measurement process imperfections can lead
to autocorrelation, suppose again that model A is the true
model of nature, and that we (correctly) use it as part of our
model of the data generating process. Also, suppose that the
measuring apparatus is imperfect, producing noisy obser-
vations that may differ from the true underlying state and
has finite temporal resolution, meaning it struggles to capture
changes in output over shorter time scales. In figure 1b,c, we
show the model solutions (solid lines) and the values that
would be measured if using a very fine temporal gridding
(dashed lines). A consequence of this smooth measurement
process is that the more observations per unit time are taken,
the greater the degree of autocorrelation in residuals. In
figure 1b, we show coarse observations of the system of interest
as indicated by the horizontal positioning of the vertical
arrows. In this case, since observations are sufficiently separ-
ated in time, there is relatively low persistence in residuals.
In figure 1c, we take more observations of the same process,
which produces positively autocorrelated residuals.

Intuitively, when the measurement process is positively
autocorrelated, each observation conveys less information
about the system than when the observations are uncorre-
lated. So misrepresenting an autocorrelated error process
with one assuming independence can lead to overly confi-
dent parameter estimates. This is a well-known result in
regression modelling [17], and, since fitting ODE models to
data is just nonlinear regression, these results should also
apply to inference for these model types. We show this in
the insets in figure 1b,c: here, the orange lines show (illustra-
tive) posterior distributions resultant from modelling the
measurement process correctly; the green lines show the dis-
tributions when modelling the measurements assuming
independence amongst them. In figure 1b, where the
measurements are widely spaced, there is little difference in
the recovered posteriors owing to the limited autocorrelation.
In figure 1c, failure to account for autocorrelation results in a
posterior with too little variance.

We originally became interested in the impact of
measurement autocorrelation on parameter estimation when
attempting inference for a model of an electrochemistry
experiment. We noticed that the estimates obtained were
unrealistically precise when assuming an IID normal error
model, and the errors were autocorrelated. This led us to
consider how this phenomena might be more generally appli-
cable and whether there were guiding principles of how the
degree of overconfidence depends on measurement autocor-
relation. Thus, in this article, we explore how measurement
autocorrelation affects the precision of estimates. The pre-
vious work, in the context of modelling physical systems,
has derived straightforward expressions for parameter uncer-
tainty for a dataset consisting only of two time points with an
accordingly simple error model [12]. Here, we consider a
much more general setting where the models are nonlinear
ODEs, which is typical in biological systems analysis, and
the measurement process can be any one of a wide class of
stochastic processes. We also account for the bias in the esti-
mates of the standard deviation of the noise when fitting a
model assuming IID Gaussian errors, which is important to
ensure correct estimates of the degree of overconfidence. By
using simulated data from ODE models, we demonstrate
the validity of our analytical results. By using experimental
data from cardiac physiology and electrochemistry, we
show that highly persistent differences between observations
and modelled quantities can occur. Whilst only illustrative,
these results hint that overconfidence in parameter estimates
may not be uncommon, particularly in systems with high-fre-
quency measurements. In addition, we provide a workflow
for diagnosing and accounting for autocorrelated errors
when fitting an ODE model to data.
2. Effect of autocorrelated noise on parameter
estimate uncertainty

In this section, we use mathematical analysis to evaluate the
effect on parameter estimates of not accounting for autocorre-
lation when present. To do so, we first calculate ‘true’
parameter uncertainties obtained when specifying a persist-
ent error model. We then calculate ‘false’ uncertainties
obtained when assuming independent errors. To derive
these quantities, we calculate the Fisher information matrix
(FIM) in both circumstances. This analysis shows that uncer-
tainty in parameter estimates is understated when (falsely)
assuming independent errors, with the degree of overconfi-
dence increasing along with the persistence of the true
errors. We call the ratio of true parameter estimate variance
to that estimated assuming independent errors the ‘variance
inflation ratio’ (VIR).

In §2.1, we estimate the VIR for the mean parameter of a
simple model with constant mean, when the actual error
process is persistent and described by an autoregressive
order-one (AR(1)) process. Calculating the VIR for the con-
stant mean model is straightforward but provides a useful
guide when examining more realistic cases. In §2.2, we con-
sider a nonlinear ODE model with AR(1) measurement
noise. In §2.3, we explore the consequences of more ephem-
eral autocorrelations by calculating the VIR for the constant
mean model with moving average order-one (MA(1))
errors. Realistic noise processes are likely, in fact, to be com-
binations of persistent and transient correlated noise, and in
§2.4, we give formulae for computation of VIRs in this,
more general, case.
2.1. Constant mean model
In what follows, we assume a time series framework where,
at time t, observed data, x(t), differs from its true constant
value, μ, by an additive random component:

xðtÞ ¼ mþ eðtÞ, ð2:1Þ
where eðtÞ is a zero-mean error random process such that
E½xðtÞ� ¼ m.

There are a number of ways that measurement errors may
be autocorrelated, and, in this article, we consider a range. To
begin, we consider AR(1) errors, in which there are persistent
deviations between the observations and the true values of a
process. This could occur, for instance, if a measurement
apparatus responds slowly to changes in a system, meaning
observations taken closer together are likely to be correlated
owing to measurement imperfections. An AR(1) process can
be represented mathematically by:

eðtÞ ¼ reðt� 1Þ þ nðtÞ, ð2:2Þ
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where nðtÞ �IID N ð0, sÞ, and −1 < ρ < 1 characterizes the degree
of autocorrelation: positive values indicating positive
autocorrelation; and similarly so for negative values.

We first derive the true (asymptotic) variance of the
maximum likelihood estimator of μ when assuming an
AR(1) error process in accordance with the true generating
process. To do so, we use the log-likelihood to determine
the diagonal element of the FIM corresponding to μ when
we assume ρ is known. To write down the log-likelihood,
we require an expression for ν(t) in terms of the observables
and parameters of the system, which can be obtained by
multiplying x(t − 1) given by equation (2.1) by ρ and sub-
tracting it from x(t), resulting in ν(t) = x(t) − ρx(t − 1) −
μ(1 − ρ). Since ν(t) is distributed as an independent
Gaussian, the log-likelihood of the model for a sample of
observations xðtÞ : 8t [ ½0, 1, 2, . . . , T� is given by:

L ¼ �T
2
log 2p� T

2
logs2 � 1

2s2

XT
t¼1

ðxðtÞ � rxðt� 1Þ

� mð1� rÞÞ2: ð2:3Þ

Where, for simplicity, we have assumed that ν(0) = 0 is fixed
and known—§3.2 describes an alternative likelihood that
does not make this assumption.

The second derivative of equation (2.3) with respect to μ
yields the relevant diagonal element of the FIM:

Im,m ¼ �E
@2L
@m2

� �
¼ Tð1� rÞ2

s2 : ð2:4Þ

The Cramér–Rao lower bound (CRLB) is the asymptotic var-
iance of the maximum likelihood estimator of μ. Because the
off-diagonal elements of the FIM are zero, the CRLB is then
given by the reciprocal of the right-hand side of equation
(2.4):

varðm̂Þ ¼ s2

Tð1� rÞ2 : ð2:5Þ

We next derive the variance of the maximum likelihood esti-
mator of μ when incorrectly assuming independent errors:
eðtÞ �IID N ð0, s0Þ. Under this false model, equation (2.5) indi-
cates that the variance of maximum likelihood estimators is
given by:

varð~mÞ ¼ s02

T
: ð2:6Þ

To meaningfully compare varð~mÞ with varðm̂Þ, it is necessary
to compare estimates of σ0, the standard deviation of noise for
the false error model, with σ, the standard deviation of ν(t) in
equation (2.2). To do so, we first compute the variance of the
(true) AR(1) errors. This can be done by taking the variance
of both sides of equation (2.2):

varðeðtÞÞ ¼ r2varðeðt� 1ÞÞ þ varðnðtÞÞ: ð2:7Þ
Assuming the error process has a constant variance, equation
(2.7) can be rearranged to yield:

varðeðtÞÞ ¼ s2

1� r2
: ð2:8Þ

The false error model variance will broadly match the true
process variance (otherwise there would be a mismatch
between the width of the true and estimated error process)
meaning σ02≈ σ2/(1− ρ2). By substituting this expression
into equation (2.6) and comparing with equation (2.5), we
see that true model parameter uncertainty exceeds that
obtained from the false model, whenever

s2

Tð1� rÞ2 .
s2

Tð1� r2Þ , ð2:9Þ

which is true when 0 < ρ < 1. The VIR is given by the ratio of
the true error uncertainty to that estimated under the false
model:

VIRðrÞ ¼ 1þ r

1� r

¼ 1þ 2r
1� r

, ð2:10Þ

which is monotonically increasing with ρ throughout 0 < ρ < 1
(figure 2a), and lim ρ→1VIR(ρ) =∞. Intuitively, as autocorrela-
tion increases, each sample conveys less information about
the underlying process, and parameter estimates have
higher variance. Mischaracterizing data as independent,
therefore, leads to overly precise estimates when the errors
are positively autocorrelated.

In our experience, and through the results we present in
§4, positive auto correlation (where ρ > 0) seems to more com-
monly occur. If negative autocorrelation does occur, equation
(2.10) indicates that assuming independent noise will pro-
duce estimators with inflated variance, and, hence, VIR < 1
(figure 2a).
2.2. Nonlinear differential equation models
We now consider a model of the form:

xðtÞ ¼ f ðt; uÞ þ eðtÞ, ð2:11Þ
where, e.g. f (t; θ) is the solution of a nonlinear ODE (or a
function of the solution of such an ODE) with univariate par-
ameter θ. As mentioned earlier, the true error process is AR(1)
as given by equation (2.2). In the electronic supplementary
material, S1.1, we show that by the same logic as in §2.1,
the VIR is given by:

VIRðrÞ ¼ ð1� r2ÞPT
t¼1 (@f=@ujt,u)2PT

t¼1 (@f=@ujt,u � r@f=@ujt�1,u)
2 : ð2:12Þ

If the differential equation solution is linear, its sensitivity is
constant, i.e. ∂f/∂θ = const, and equation (2.10) for the con-
stant mean model is recovered. If the differential equation
has relatively weak nonlinearities, our simulations in §4 indi-
cate that equation (2.10) nonetheless provides a reasonable
approximation of equation (2.12).

If the model has multiple parameters, so that θ is a
vector, it is possible to derive a VIR (see the electronic sup-
plementary material, S1.2). However, this expression is not
as straightforward to intuit as equation (2.12). Indeed, in
some of our examples, it is not straightforward to calculate
this quantity, and, instead, we approximate the VIR using
equation (2.10).

Until this point, we have assumed that only the model
parameters are unknown, but it is more typical that σ, ρ
and/or the initial state of the system must also be estimated.
The results in the electronic supplementary material, S1.3 and
S1.4 show that, since the off-diagonal terms corresponding to
σ and ρ are zero, that these parameters being unknown does
not affect the variances of the θ estimates. In the electronic
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Figure 2. Variance inflation ratios for ARMA processes: (a) the VIR for AR(1) and MA(1) processes as a function of their respective parameters, and (b) the VIR for an
ARMA(1,1) process.
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supplementary material, S1.5, we show that the off-diagonal
terms corresponding to θ and the initial state of the system
are generally non-zero: estimates of the model parameters
can be correlated with the initial state estimates. This
indicates that the exact VIR for model parameters is a less
compact expression than equations (2.10) or (2.12) when the
initial state is unknown. Our results in §4, however, indicate
that equation (2.10) may nonetheless provide a reasonable
approximation in some systems, even for substantially
autocorrelated errors.

2.3. Moving-average processes
Our results thus far correspond only to AR(1) errors. Other
types of autoregressive (AR) error processes also exist: one
such class is the moving-average (MA) processes. In MA pro-
cesses, the autocorrelation is generally less persistent than for
AR processes. The simplest MA process is an MA(1) process,
in which a measurement error is correlated with its value in
the previous period, but not thereafter. This could occur if
ephemeral, short-term factors influence consecutive measure-
ments. An MA(1) process can be written as follows:

eðtÞ ¼ nðtÞ þ fnðt� 1Þ, ð2:13Þ
where nðtÞ �IID N ð0, sÞ.

For simplicity of derivation, we revisit the ‘constant mean’
model described in §2.1, with errors described by an MA(1)
process:

xðtÞ ¼ mþ nðtÞ þ fnðt� 1Þ: ð2:14Þ
The steps involved in the calculation of the VIR for the MA(1)
case mirror those involved for the AR(1) case and detailed
calculations are given in the electronic supplementary
material, S2. The VIR for the μ parameter of equation (2.14)
is given by:

VIRðmÞ ¼ 1þ 2f
1þ f2 , ð2:15Þ

meaning the variance of the true model estimator exceeds the
false model whenever ϕ > 0 and has a maximum value:
VIR(ϕ = 1) = 2. In the electronic supplementary material,
S2, we describe simulations which we performed to
demonstrate the validity of equation (2.15). The electronic
supplementary material, figure S1 shows the results of these
and illustrates that empirical and theoretic VIRs are in good
correspondence.

Figure 2a demonstrates that, whenever there is positive
autocorrelation, VIR > 1, meaning that the estimator variance
under the true noise model is greater than under the false
model. In addition, if ρ = ϕ > 0 for each of an AR(1) and an
MA(1) process, the VIR for the former always exceeds the
latter. This makes intuitive sense since an AR(1) process has
greater error persistence, meaning that the effects of model
misspecification are amplified relative to the more transient
MA(1) process.
2.4. Autoregressive moving-average noise processes
Noise processes may not neatly fall into either AR or MA pro-
cesses, nor need they necessarily be of order 1. In general,
noise may be a combination of these two processes, as in
the following ARMA process formed by combining an
AR( p) process with an MA(q) process (termed an ARMA( p,
q) process):

eðtÞ ¼ r1eðt� 1Þ þ � � � þ rpeðt� pÞ þ nðtÞ þ f1nðt� 1Þ
þ � � � þ fqnðt� qÞ: ð2:16Þ

These general processes can be rearranged using the lag oper-
ator, L at = at−1 (see [18, ch. 2] for a discussion of the use and
usefulness of lag operators) to:

nðtÞ ¼ 1� r1L� � � � � rpL
p

1þ f1Lþ � � � þ fqLq
eðtÞ

¼ CpðLÞ
FqðLÞ eðtÞ,

ð2:17Þ

where CpðLÞ and FqðLÞ denote the corresponding lag
operator polynomials. By using equation (2.17), we can deter-
mine the asymptotic variance of the maximum likelihood
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estimator for μ in the constant model defined by equation
(2.1):

varðm̂Þ ¼ s2

T
Fqð1Þ2
Cpð1Þ2

: ð2:18Þ

Equation (2.18) gives the variance of the maximum likelihood
estimator of μ when assuming the correct error model. As
mentioned earlier, we can also calculate the estimator var-
iance when incorrectly assuming independent Gaussian
noise. To do so requires that we calculate the variance of an
ARMA( p, q) process, which for general p and q yields an
unwieldy polynomial expansion. Instead, for illustration,
we consider the ARMA(1,1) case, which has relatively
simple variance [18] given by:

varðeðtÞÞ ¼ 1þ f2 þ 2fr
1� r2

: ð2:19Þ

Thus, the VIR is given by,

VIRðr, fÞ ¼ 1þ 2r
1� r

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
VIR of ARð1Þ

1þ 2fð1� rÞ
1þ f2 þ 2fr

� �
, ð2:20Þ

which, as indicated, is the VIR for an AR(1) process multiplied
by a factor. This factor exceeds 1 so long as ϕ > 0 and 0 < ρ < 1,
meaning that the VIR for an ARMA(1,1) process exceeds the
VIR for an AR(1) process (and, hence, also that of an MA(1)
process) whenever there is positive autocorrelation in terms
of both the autoregressive and moving-average terms of the
error (see figure 2b). This makes intuitive sense since, if
both constituents of an ARMA(1,1) process cause positive
autocorrelation, the combined noise process has even greater
autocorrelation.

In the electronic supplementary material, S3, we describe
simulations to demonstrate the validity of equation (2.20). In
the electronic supplementary material, figure S2, we show the
results of these simulations which show that theoretical VIRs
are in good correspondence with empirical values.
3. Applied modelling
In this section, we first describe in §3.1 approaches to diag-
nosing and modelling time series error processes. In §3.2,
we then describe how to fit these models to data.

3.1. Determining an appropriate noise process
When analysing real data, it is generally not straightforward
to know what type of measurement process to assume. The
canonical assumption is that of IID normal measurements.
After such a model is fitted, it is possible to test whether
the errors—representing both measurement processes and
model discrepancies—exhibit autocorrelation. Because the
errors represent both of these factors, their autocorrelation
does not necessarily reflect imperfections in the measurement
process. However, if autocorrelation is detected, this forces
the analyst to reflect on their chosen measurement model
and potentially to refit their model using a more appropriate
measurement process. This suggests the following workflow:

(i) use an optimizer to fit a model to data. This can be
done by targeting either the maximum likelihood par-
ameter values or, alternatively, the Bayesian maximum
a posteriori (MAP) estimates. We denote the estimated
parameter values by û;

(ii) calculate the residuals: êðtÞ ¼ xðtÞ � f ðt; ûÞ. Note that
these differ from the true errors eðtÞ since they are
obtained using the estimated parameter values rather
than the true equivalents;

(iii) calculate the sample autocorrelation function:
GðtÞ ¼ corðêðtÞ, êðt� tÞÞ for τ∈ [1, 2,…, τmax]; and

(iv) if there is evidence of substantial autocorrelation, then
consider whether this is owing to model misspecifica-
tion or measurement processes. If the former, consider
changing the underpinning mechanistic model. If the
latter, do a refit assuming an autocorrelated noise
model (this fit can either be done via maximization,
for maximum likelihood estimation or MAP esti-
mation; or using, e.g. a Markov chain Monte Carlo
(MCMC) algorithm for a full Bayesian fitting).

However, if there is evidence of autocorrelated residuals,
what autocorrelated noise model should be fitted? This
depends on the problem at hand but can, as suggested earlier,
be guided by the sample autocorrelation function of residuals
obtained from fitting a model with independent Gaussian
errors. For AR(1) processes, the autocorrelation function is [18]:

GðtÞ ¼ rt, ð3:1Þ
i.e. when |ρ| < 1, an autocorrelation function that decays
exponentially with lag (figure 3). For MA(1) processes, the
autocorrelation function is:

GðtÞ ¼ f, if t ¼ 1
0, otherwise:

�
ð3:2Þ

So, for MA(1) processes, substantial autocorrelation occurs
only at the first lag. More generally, for MA(q) processes, auto-
correlation exists until the qth lag (figure 3). Indeed, whenever
|ρ| < 1, it is possible to use the Koyck transformation to
rewrite an AR(1) process as an MA(∞) process (with MA coef-
ficients exactly mirroring the autocorrelations given in
equation (3.1)), which provides some intuition for the inter-
relation between these two types of processes [18].

Choosing an ARMA error process that mirrors the auto-
correlation patterns seen in the residuals provides a
somewhat automated way of deciding on a noise model
and, essentially, follows the approach forged by Box and Jen-
kins in their pathbreaking 1970s book (recent edition: [19]).
This framework is, by no means, the only workflow followed,
since applied time series modelling is, actually, a much
broader church. An alternative popular approach falls
under the banner of ‘structural time series (STS)’ or ‘state-
space’ modelling, championed originally by Harvey for
econometric time series [18]. In this philosophy, a time
series is built up from various latent (i.e. not directly
observed) components that represent characteristics of the
series. For example, a series may be decomposed into
stochastic time trends and cyclical components.

The STS approach is more model-driven and aims to
decompose a series into understandable components. The
STS framework is also naturally able to handle series that
are non-stationary, where the probability distributions gov-
erning quantities like the mean and variance of the process
vary over time. In the Box–Jenkins approach, by contrast,
any non-stationarity is treated first by differencing the
series, that is, via the operator, Δs yt = yt− ys, then by fitting
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an ARMA model to the transformed series—this combined
process of differencing followed by fitting ARMA models is
termed autoregressive integrated moving-average process
(ARIMA) modelling.

Because both types of time series analysis—ARMA and
STS—are used in practice, we do not suggest a single path
here. In the two real data examples in §4, we initially follow
Box–Jenkins and examine how well different ARMA models
fit the residual series using the Akaike information criterion
(AIC). This provides us with a guide as to whether models
allowing autocorrelation better fit the data and hints as to
which alternative models should be fitted—particularly as, in
our examples, it is feasible that measurement apparatus
imperfections could lead to residual autocorrelation.
3.2. Model fitting
When an appropriate error process has been chosen using the
framework described in §3.1, it is necessary to fit the model to
data. For ARMA processes, there are essentially two ways to
fit such models to data: the first uses the generative process
model to write down a conditional likelihood; the second,
and more general approach, uses Kalman filters, which pro-
vide an efficient means to calculate likelihoods. An
additional benefit of Kalman filters is that they can also
handle STS-type models (see §3.1). Here, we describe how
the first, and simpler, of these approaches can be used to fit
an ODE model with ARMA(1,1) errors. The equivalent
Kalman filter approach is provided in the electronic sup-
plementary material, S4. In both cases, we suppose that the
measurement equation for a univariate system observable is
determined by the following system:

xðtÞ ¼ f ðt; uÞ þ eðtÞ
and eðtÞ ¼ reðt� 1Þ þ nðtÞ þ fnðt� 1Þ,

)
ð3:3Þ

where, as in previous cases, nðtÞ �IID N ð0, sÞ.
To determine the likelihood for this model, we assume

that the first two terms ν(1) = 0 and ν(2) = 0: this is known
as a ‘conditional likelihood’ approach because we condition
on initial values of processes.1 (Alternatively, rather than
directly specifying ν(1) and ν(2), in a Bayesian framework,
these can be set priors, allowing them to potentially take
non-zero values.) For a given value of θ, the error can be
directly calculated using eðtÞ ¼ xðtÞ � f ðt; uÞ. Putting these
together, we obtain:

nðtÞ ¼ eðtÞ � reðt� 1Þ � fnðt� 1Þ, 8t . 2: ð3:4Þ

Thus, the log-likelihood for this model is given by,

L ¼ �T � 2
2

log 2p� T � 2
2

logs2 � 1
2s2

XT
t¼3

nðtÞ2: ð3:5Þ

The results shown in §4 of this article were generated
assuming such a conditional likelihood approach.
4. Results
Here, we present results that illustrate the importance of
assessing the validity of independent measurements and
the consequences of failing to account for these measurement
imperfections, when present. In §4.1, we first use synthetic
data generated from a logistic model. In §4.2, we then use
real data from cardiac electrophysiology experiments. In
§4.3, we model outputs from electrochemistry experiments.

4.1. Logistic model
In this section, we use a simple ODE model to demonstrate
how failing to account for autocorrelated measurements can
lead to overly confident estimates; it also shows how mista-
kenly assuming independent measurements leads to more
variable estimates. Here, we use the logistic model, which
is a univariate ODE, with the solution determined from:

dxðtÞ
dt

¼ rxðtÞ 1� xðtÞ
k

� �
, ð4:1Þ

where r > 0 is a parameter determining the initial exponential
growth rate, and κ = lim t→∞ x(t) is the carrying capacity;
x(0) > 0 is the initial output value. The logistic model is
common in mathematical biology, where it is typically used
to describe resource-limited growth: imagine bacteria divid-
ing on an agar plate—initially, bacteria have access to much
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resource, and the population density grows fast; later, once
food becomes scarce, growth slows and the population even-
tually reaches a maximum size.

In our experiments, we generated x(t) using r = 0.5,
κ = 50 and x(0) = 1. We then generated observations
yðtÞ ¼ xðtÞ þ eðtÞ and used AR(1) errors, eðtÞ, as described
by equation (2.2), where we fixed σ = 1 and used five ρ
values between 0.8 and 0.975 to generate synthetic datasets.
For each ρ value, we generated a dataset consisting of 2000
equally spaced observations between t = 0 and t = 20. Ten
such replicate datasets were generated for each ρ value. For
each of these replicates, we fitted two statistical models: the
correct one, which assumes AR(1) errors; the other, with
IID Gaussian errors. For both models, we estimated r, κ,
x(0) and σ; for the AR(1) model, we also estimated ρ. For
the AR(1) model, we calculated the likelihood using the
generative model log-likelihood approach described in §3.2.
The priors that we use for each parameter are shown in
the electronic supplementary material, table S1. The ODE
was solved using Stan’s Runga-Kutta 4-5 solver [21]. These
models are fitted using Stan’s NUTS MCMC algorithm [22]
with 2000 iterations across each of four chains, with 1000
initial iterations discarded as warm-up. In all cases,
R̂ , 1:01 for all model parameters diagnosing MCMC
convergence [23].

In figure 4, we show summaries of the posterior distri-
butions for the logistic model parameters for both the IID
and AR(1) models fitted to each of the replicate datasets.
The columns show results for different values of ρ; the
rows show separate results for r and κ in equation (4.1).
Within each panel, we show the IID and AR(1) posteriors
for each replicate dataset.

We focus first on point estimates of the parameter values
(the points and triangles in figure 4). Across the two model
parameters and both noise models, the point estimates
become more variable as ρ increases. Yet, over each set of
replicates, the estimates appear relatively unbiased, with
point estimates as likely to overestimate the true values as
to understate them. The extent of variation, however, differs
between the two models, and for 71% of replicates, the
point estimate from the AR(1) model was closer to the true
parameter value than the equivalent from the IID model.2

In the electronic supplementary material, figure S3, we quan-
tify this by calculating the absolute percentage error in
estimating each parameter value across all replicates at a
given value of ρ for both noise models. This shows that the
predictive errors for the logistic growth parameter, r, were
between <1% and 21% over all ρ values considered; the
errors for the carrying capacity, κ, were, in general, lower
(range: <1%–6%). This difference in accuracy is probably
owing to the somewhat narrower range of times when the
model solution is sensitive to small changes in r as opposed
to κ. The electronic supplementary material, figure S3 also
shows that as ρ increases, both models get worse at estimat-
ing the true parameter; for r, the AR(1) model, however, does
better on average than the IID one; for κ, both models
perform similarly in terms of average error.

We next examine the uncertainty in estimates (the whis-
kers in figure 4). Across the two model parameters and
both noise models, the posterior uncertainties widen as ρ
increases. The extent to which they increase in width differs
across both noise models, however, with the AR(1) uncertain-
ties widening more acutely with changes in ρ. Indeed, for
each replicate, we can calculate the ratio of the posterior
variance for the AR(1) model to the IID model—in effect, esti-
mating a VIR in each case—which we show in figure 5. The
two rows here both show how the VIRs for each logistic
model parameter increase along with ρ. To illustrate how
our theory predicts this change, we also plot the theoretical
VIR (blue-dashed lines; see the electronic supplementary
material, S1.5) and the more approximate VIR which assumes
the function is constant (equation (2.10); grey lines). Note that
both VIRs plotted are somewhat approximate since they are
derived from considering maximum likelihood estimates for
an unbounded parameter, which is an approximation in
this case since both r and κ are bounded below at zero, and
we perform Bayesian inference using Gaussian priors. The
theoretical results nonetheless capture well how the VIRs
change with ρ, and equation (2.10) performs similarly to
the more accurate result until the degree of autocorrelation
is very high.

Finally, we examine how frequently the 95% posterior
interval for the IID and AR(1) model posteriors encompass
the true parameter value: we call these cases ‘successes’. In
the electronic supplementary material, figure S4, we show
the percentage of successes for r and κ at each value of ρ
examined. Overall, this shows that the AR(1) posterior inter-
vals more frequently encompass the true parameter value
than the IID model. Indeed, across all values of ρ investi-
gated, the maximum success percentage for r was 60% for
the IID model and 100% for the AR(1) model (the results
were qualitatively similar, albeit of different magnitudes for
κ). In addition, as ρ increased, the frequency of success
decreased for both parameters in the IID model; in all
cases, the AR(1) model success frequencies did not change
directionally with ρ.

Overall, our results show that using an inappropriate
noise model results in more variable point estimates of par-
ameters and uncertainties that are less reliable. This result
has long been appreciated in time series regression analyses,
where methods like generalized least squares—which essen-
tially attempt to account for the structure of the noise—are
commonly used when errors appear to deviate from IID
Gaussian [17].
4.2. Cardiac electrophysiology model
We next examine a real dataset collected from experiments in
cardiac electrophysiology on the human Ether-à-go-go-Related
Gene (hERG) ion channel. These datasets are published in
[24,25]. In the experiments, current from the hERG channel,
which is often referred to as the rapid delayed rectifier potass-
ium current, IKr(t), is measured under a time-varying voltage
stimulus V(t). The same laboratory experiment was con-
ducted on five different cells, and we fit to each of these
datasets separately, producing five sets of estimates.

Here, we model the current response of the hERG channel
to this stimulus using an ODE model in the flavour of Hodg-
kin and Huxley’s (HH) landmark study [3]. This model
contains two HH-style gating variables (‘activation’ a and
‘recovery’ from inactivation r) and a standard Ohmic
expression:

IKrðtÞ ¼ gKr � aðtÞ � rðtÞ � ðVðtÞ � EKÞ, ð4:2Þ
where gKr is the maximal conductance, and EK is the reversal
potential (Nernst potential) for potassium ions, which can be
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calculated directly from potassium concentrations using the
Nernst equation. The voltage stimulus is a complicated ‘stair-
case-like’ function with no simple closed form: see [24] for
further description. The gates a and r are governed by the
ODEs:

da
dt

¼ a1 � a
ta

and
dr
dt

¼ r1 � r
tr

,

a1 ¼ k1
k1 þ k2

and r1 ¼ k4
k3 þ k4

and ta ¼ 1
k1 þ k2

and tr ¼ 1
k3 þ k4

,

where

k1 ¼ p1 expðp2VÞ and k3 ¼ p5 expðp6VÞ

and

k2 ¼ p3 expð�p4VÞ and k4 ¼ p7 expð�p8VÞ:

The model has nine positive parameters to be inferred
from the experimental data: maximal conductance gKr and
kinetic parameters p1, p2, p3,…, p8. The initial conditions of
the system were assumed to be: a(0) = 0 and r(0) = 1 and the
system was solved for 100 s at V =−80 mV before running
the staircase protocol.

Here, we assume that the measured current differs from
the true current and is described by IðtÞ ¼ IKr þ eðtÞ, where
eðtÞ is an error process that can either be IID Gaussian,
eðtÞ �IID N ð0, sÞ, or described by an AR process.
First, we use optimization to determine whether there is
evidence of autocorrelation in the errors. To do so, we maxi-
mize the posterior assuming IID noise and from this to obtain
a residual series. For optimization, we used CMA-ES [26], a
derivative-free optimizer, as implemented in PINTS [27]
following previous work [24,25]. In the electronic supplemen-
tary material, figure S5, we plot the sample autocorrelation
function for the residuals for each of the cells, which illus-
trates strong and persistent autocorrelation, characteristic of
AR processes. Across all cells, the estimated first-order
residual autocorrelation was between 0.57 and 0.83.

We then compared the fit of the residual series to a range
of ARMA processes: MA(1), AR(1) and ARMA(1,1), all of
which could reasonably represent experimental artefacts:
e.g. series resistance and leakage currents [28]. For each cell,
we calculated the AIC for a range of ARMA( p, q) processes
(where a lower AIC indicates a better fitting model [29]).
The best ARMA model varied by cell and optimal p was
between 1 and 5 and q from 2 to 5 (see the electronic
supplementary material, figure S6). In the electronic sup-
plementary material, figure S7, we show the result of these
comparisons. Each panel of this figure corresponds to a cell.
In each panel, we show the percentage difference between
the AICs of each other process to the best fitting ARMA
model (‘Min AIC’). In all cases, this shows that the IID
Gaussian model is bettered by models encompassing auto-
correlation. It also shows that the models incorporating AR
terms outperformed the MA(1) model. In all cases, the
ARMA(1,1) model produced a similar quality fit to the best
model. Because of this, we decided only to attempt to
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perform Bayesian inference for the full model using the more
parsimonious ARMA(1,1) noise compared to the best fitting
ARMA( p, q) process.

To perform Bayesian inference, we used MCMC sampling
for the IID, AR(1) and ARMA(1,1) noise models. For the
sampling, we used population MCMC, which runs a series
of chains at different ‘temperatures’ [30], using the default
PINTS [27] algorithm settings. For each noise model and
each of five cells, we ran four Markov chains with 150 000
iterations on each, with the first 50 000 of these discarded
as warm-up; the draws were thinned by a factor of 10 after
sampling.

While the ARMA(1,1) model was the best fit to the
residuals, we could not achieve convergence with this
model despite trying a range of informative priors on noise
parameters. The difficulty of performing Bayesian inference
for ARMA models has been noted before [31]. Because of
this, we present results only for the IID and AR(1) models,
which had R̂ , 1:1 for all parameters. The priors
specified for these two models are shown in the electronic
supplementary material, table S2.

In figure 6, we compare the posterior distributions for the
model parameters obtained across both noise models. For
some parameters: gKr, p1, p2 and p6, the estimates were similar
across both the IID and AR(1) models; for others: p3, p4, p5, p7
and p8, there were often substantial differences. Despite these
differences in parameter values, the IID and AR(1) models
appeared visually to fit the data equally well (electronic
supplementary material, figure S8). The extent to which the
estimates differed also depended on the cell in question,
with the cells shown in pink and dark green generally
showing greater discrepancies.

To further investigate the cause of these discrepancies, in
the electronic supplementary material, figure S9, we plot the
posterior median ρ value from the AR(1) model versus the
absolute percentage difference between the IID and AR(1)
models. We also plot the best fit lines (in black) from linear
regressions of the absolute difference on ρ for each parameter.
Across all parameters, these indicate that as the magnitude of
estimated error autocorrelation increased, there were greater
differences between the IID and AR(1) model estimates.

Finally, we estimate VIRs for each parameter across all
cells in the system by taking the ratio of the AR(1) posterior
variance to the IID equivalent. In figure 7, we plot these
versus the estimated ρ value for each cell. In all cases, as ρ
increased, the VIRs followed suit. In the same plot, we also
overlay the theoretical VIR given by equation (2.10) for a
linear model, since the nonlinear case is not straightforward
to calculate for this model. Whilst the hERG model is non-
linear and the true noise process is unknown, in many
cases, the theoretical VIR provided a reasonable guide as to
how the variance increased with ρ.
4.3. Electrochemistry model
We next apply our methodology to a system in electrochemis-
try: unlike the previous examples, the model here is a partial
differential equation (PDE), although yielding a single
output—a current—which we fit to data. Since none of the
theory derived in §2.2 assumes a particular form of the func-
tion, the results are not bespoke for ODEs. Because the PDE
has only a single output time series, we use the same statistical
framework as for our other examples. Further details are pro-
vided in the electronic supplementary material, S5.1.

In this example, we observed current time series, f~ItotðtÞg
resulting from a laboratory experiment. We assumed that
~ItotðtÞ ¼ ItotðtÞ þ eðtÞ, where eðtÞ is an error process. We
fixed a series of parameters in the model to experimentally
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determined values as given in the electronic supplementary
material, table S3. On the remaining six parameters, we
placed uniform priors as given in the electronic supplemen-
tary material, table S4.

To assess the level of autocorrelation in the error process,
we follow the approach outlined in §3.1. In particular, we
assumed that the noise process is IID Gaussian and used
an optimizer, CMA-ES [26] (as implemented in PINTS [27]),
to determine maximum likelihood estimates of the parameter
values and to obtain a residual series. We then compared the
fit of various ARIMA models to these residuals: in figure 8,
we compare the AICs from IID, MA(1), AR(1) and
ARMA(1,1) models to the one which minimized this
criterion: an ARIMA(4,1,4) model. This shows that the IID
Gaussian model is substantially bettered by models
incorporating autocorrelation in the error series.

As part of this process, we also fitted to the residual
series using various types of state-space models. To do this
fitting, we relied on the Statsmodels Python package [32].
The state-space models we tried included a local level model,
a random walk with drift model and a random trend model: all
of these had substantially worse fits as determined by AIC
compared to the ARIMA processes. Because of this, we did
not go ahead with full Bayesian inference for these model
types.

We next attempted to fit the electrochemistry model
assuming AR(1), ARMA(1,1) and the ARIMA(4,1,4) error
processes in a Bayesian model; we also fitted the model
using a IID Gaussian error process for comparison. The
models were fitted using the Haario–Bardenet adaptive-
covariance MCMC algorithm in PINTS [27]. Uniform priors
were set on all fitted parameters as described in [33]. The
Markov chains were initialized to the MAP estimates found
using the CMA-ES optimization algorithm. Three chains
were run using 10 000 samples, the first 3000 of which were
discarded as warm-up. Convergence was diagnosed via
R̂ , 1:1. We were unable to obtain Markov chain conver-
gence for the ARIMA(4,1,4) model: we speculate that this
was because the additional number of parameters of this
model caused the inferred errors themselves to become
unidentified.

In figure 9, we show the estimated posteriors for the IID,
AR(1) and ARMA(1,1) models. In this figure, the panels show
posterior summaries for each parameter across the three
models. Across all parameters, the AR(1) and ARMA(1,1)
models had increased uncertainty relative to the IID model.
This was most notable for the uncompensated resistance Ru,
where the two models with autocorrelated errors produced
distributions with longer tails. In addition, the median
point estimates of parameters varied across the three
models (again, most notably for Ru).
5. Discussion
This work highlights how mischaracterizing the measure-
ment process for ODE models can have marked
consequences for inference. Our results indicate that failing
to account for measurement-induced autocorrelation in
errors results in overconfident estimates of parameter
values, with the degree of overconfidence depending on the
magnitude and type of stochastic process governing
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measurements. By using real data collected from experiments
in cardiac electrophysiology and electrochemistry, we fit
models assuming independent errors and obtained residual
series that bore the hallmarks of autocorrelated errors.
When these models were refitted assuming autocorrelated
noise processes, we obtained considerably wider parameter
bounds than when specifying independent noise. Whether
this is a more general phenomena is unclear, but our results
indicate that choice of measurement process can substantially
affect inference. So choice of measurement process needs to
be done with due care, and the types of diagnostic plots we
use here can help to guide this process.

Misspecification of the ODE model can also generate
autocorrelated errors, but its impact on inferences is probably
different. When an ODE model is misspecified, parameter
estimates (if these same parameters span both the correct
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and misspecified models) may display bias owing to par-
ameter compensation [13,14]. Error autocorrelation owing to
model misspecification could, in some cases, be modelled
using some of the noise processes we describe here. Whether
they should be, however, is less clear. It is possible that the
two example systems we investigated did involve misspeci-
fied models and part of the observed autocorrelation was
owing to this. We found that, by accounting for an autocorre-
lated error process, the uncertainty in the estimates was
generally wider and, in some cases, the point estimates
deviated considerably from the null IID Gaussian model.
Because these are real life models, however, it is not straight-
forward to determine whether using an autocorrelated error
model led to improved estimates. Future work, using toy
models with known misspecifications and autocorrelated
measurement processes could shed light on how best to
account for both issues.

In this work, we considered a range of noise processes
including ARMA and STS models. For our applied examples,
sometimes complex autocorrelation structures were found to
best fit the error variation, and it is questionnable whether
measurement processes could have generated these errors.
In addition, in some circumstances, the imposition of such
measurement processes rendered the system practically uni-
dentified, an issue with error processes which have long
been recognized [31]. So how should an appropriate noise
model be chosen? A noise process is itself a model, albeit a
statistical one. Like other elements of the system, it should
be understandable: if it is overly complex, the noise process
is more likely to overfit current data resulting in poor gener-
alization of the overall model. By contrast, when assuming
independent noise, this can also often produce parameter
sets that are more likely to overfit current data. We, hence,
argue that using a low-order ARMA model or a relatively
simple STS noise model is preferable in many circumstances
by helping to guard against some of the larger effects of
measurement model misspecification. We do not make rigid
specifications as to the limiting complexity of these processes
that are used but believe a reasonable litmus test is, ‘Could I
convince a colleague that this noise process represents the
actual measurement process?’ If the measurement process is
well understood and arguments can be made for complex
measurement processes, then this reasoning should be
explicitly stated.

More mechanistic models of the measurement process
may also lead to clearer understanding of the underlying bio-
logical processes. A recent study modelled the measurement
process of patch-clamp experiments, accounting for series
resistance, membrane and pipette capacitance, voltage off-
sets, imperfect compensations made by the amplifier and
leak currents [28]. In explaining inter-cell variation through
imperfections in measurement, this produced a more parsi-
monious explanation of the data than when assuming cell-
specific ion current kinetics. Another study from parasitology
examined laboratory experiments, where mosquitoes are
infected with malaria parasites through membrane feeding
assays [34]. By considering the measurement processes lead-
ing to observations—that experiments consist of mosquitoes
being randomly sampled from a wider pool of specimens
and each dissection representing an individual snapshot of
the parasite dynamics—this resulted in novel estimates of
key parameters in epidemiology.
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Here, we considered only noise processes which had a
fixed form over time, meaning our analysis does not consider
either temporal or output-linked heteroscedasticity. Nor do
the noise models we consider allow the autocorrelation struc-
ture itself to change with time. Recent work in related
systems has shown that time-varying noise processes may
provide a better representation, where, typically, throughout
a time trace of an output variable, there are some regions of
low autocorrelation and low variation punctuated by high
autocorrelation/high uncertainty regions [35]. The general
noise processes used to handle these temporal patterns are
likely to be non-parametric and less amenable to direct analy-
sis than the processes we consider here. However, our
analytical results may nonetheless provide an approximate
guide as to the impact on parameter inference of modelling
noise using non-IID processes. We also did not consider
measurement of multiple states of a system and the possible
correlations across these, which, intuitively, should reduce the
information content of observations. It has been empirically
demonstrated that choosing the so-called robust error
models, such as the Student-t and Huber distributions can
lead to better estimates [11], and it is possible that the tech-
niques we use here could produce useful analytical results
when applied to those situations.

In systems where the state is measured repeatedly over
short time intervals, such as those in electrochemistry, cardiac
physiology and neuroscience, experimental limitations may
mean that the assumption of independent measurements is
suspect. In these types of systems, it may thus be better to
assume an autocorrelated measurement model by default to
mitigate against the risk of unrealistically precise estimates.
As experimental methods are developed to allow collection
of data at increasingly finer gradations, however, accounting
for measurement imperfections will probably be increasingly
important when performing inference.
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Endnotes
1This approach follows the discussion in [20, ch. 5.6].
2In experiments with more replicates (50 opposed to 10 per par-
ameter set), we found qualitatively similar results, with 66% of
AR(1) estimates closer to the true values than the IID equivalents
(95% credible interval: 62%–70%, assuming a uniform prior.)
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