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Reduction of the rapid delayed rectifier potassium current (IKr) via drug binding
to the human Ether-à-go-go-Related Gene (hERG) channel is a well
recognised mechanism that can contribute to an increased risk of Torsades
de Pointes. Mathematical models have been created to replicate the effects of
channel blockers, such as reducing the ionic conductance of the channel.
Here, we study the impact of including state-dependent drug binding in a
mathematical model of hERG when translating hERG inhibition to action
potential changes. We show that the difference in action potential
predictions when modelling drug binding of hERG using a state-dependent
model versus a conductance scaling model depends not only on the properties
of the drug and whether the experiment achieves steady state, but also on the
experimental protocols. Furthermore, through exploring the model parameter
space, we demonstrate that the state-dependent model and the conductance
scalingmodel generally predict different action potential prolongations and are
not interchangeable, while at high binding and unbinding rates, the
conductance scaling model tends to predict shorter action potential
prolongations. Finally, we observe that the difference in simulated action
potentials between the models is determined by the binding and unbinding
rate, rather than the trapping mechanism. This study demonstrates the
importance of modelling drug binding and highlights the need for improved
understanding of drug trapping which can have implications for the uses in
drug safety assessment.
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1 Introduction

The human Ether-à-go-go-Related Gene (hERG) encodes the
pore-forming alpha subunit of the ion channel KV11.1 that conducts
the rapid delayed rectifier potassium current, IKr (Sanguinetti et al.,
1995). Reduction of IKr can lengthen the action potential (AP) and is
associated with increased risk of arrhythmias, including Torsades de
Pointes (Curran et al., 1995; Heist and Ruskin, 2010). The hERG
channel is highly susceptible to block or functional inhibition by a
variety of drugs (Thomas et al., 2004; Mitcheson, 2008; Vandenberg
et al., 2012). This is reflected in the International Council for
Harmonisation of Technical Requirements for Pharmaceuticals
for Human Use (ICH) guidelines where the degree of IKr
inhibition is part of the measures used in proarrhythmic risk
assessment (Anonymous, ICH S7B, 2005), which has recently
been updated to consider in silico simulations and pluripotent
stem cell-derived cardiac myocytes experiments for integrative
risk assessment (Anonymous, ICH E14/S7B Q&A, 2022).

The principal binding site of the hERG channel lies within its
inner cavity (Mitcheson, 2008) and the majority of hERG-blocking
drugs bind when the channel is open (Vandenberg et al., 2012).
When the channel closes, some drugs can remain bound, trapped
within the central cavity, so that unbinding can only happen on a
subsequent re-opening (Mitcheson et al., 2000; Stork et al., 2007).
For example, dofetilide has been shown to remain bound when the
hERG channel closes (Kamiya et al., 2006), while verapamil can still
unbind from the hERG channel after repolarisation (Zhang et al.,
1999). Simulation studies have suggested that such trapped drugs
may be more prone to cause arrhythmia (Di Veroli et al., 2014;
Pearlstein et al., 2016).

Trapping can be investigated experimentally by studying the rate
of recovery from drug block at the resting potential (Stork et al.,
2007; Windisch et al., 2011). In voltage-clamp experiments using
“Milnes’ protocol” (Milnes et al., 2010), the property of drug
trapping can be seen as a lack of recovery from drug block
during long intervals between successive channel-opening pulses:
Non-trapped drugs can dissociate during these intervals so that
current amplitude is restored on the next opening, while for trapped
drugs the current remains diminished upon re-opening.

Drug effects can be incorporated into mathematical models of
ion currents, which can then be embedded in cell models to study
their effect on the action potential duration (APD) (see, e.g., Mirams
et al., 2011). The predicted APD changes can then be used directly,
as a surrogate for changes in the QT interval, or in multi-scale
models that go up to tissue, organ, or even ECG level (Brennan et al.,
2009; Mirams et al., 2012). A straightforward way of including drug
effects in ion current models, is to assume that a certain fraction of a
cell’s channels are blocked, and to scale the current’s maximum
conductance (or permeability) variable accordingly (see, e.g., Davies
et al., 2011). Alternatively, drug effects can be modelled by changing
channel transition rates (Tsujimae et al., 2007) or by adding new
states to a multi-state channel model (Di Veroli et al., 2012). This
strategy of adding states has also been used to study trapping (Di
Veroli et al., 2014; Li et al., 2017).

Here, we will focus on two particular models of hERG block. The
first, shown in black in Figures 1A is the six-state model by Li et al.
(2016). In this model, drug block can be simulated by scaling the
conductance variable, and we shall refer to it as the conductance scaling

(CS) model. The secondmodel, by Li et al. (2017), extends the first with
the three additional states, shown in blue in Figure 1A. These additional
states are used to model drug block and trapping, and we shall refer to
the extended nine-state model as the state dependent (SD) model. Both
models are described in detail in Section 2.

An interesting feature of the SDmodel is that its transition rates can
be adjusted to mimic the effects of different drugs. This is illustrated in
Figure 1B, where we show the experimental data (orange) and model’s
response (blue) to Milnes’ protocol (top panel) when parameterised for
dofetilide, a trapped drug (middle panel) and verapamil, a non-trapped
drug (lower panel) for hERG (Li et al., 2017). The drug concentrations
of dofetilide and verapamil were 30 nM and 1 μM, respectively, giving
75%–90% steady state block of hERG. In both cases, IKr rapidly activates
during the high-potential pulses, but its magnitude then diminishes as
the drug binds to and blocks the open channels. In the trapped case, the
drug stays bound during the interpulse interval, so that the current at
the start of each pulse maintains the diminished magnitude of the
previous pulse, and this process continues until the drug binding
saturates. In the non-trapped case, the drug dissociates during the
interpulse interval, so that each successive pulse shows a similar IKr
response. This mechanism is illustrated further in Figure 1C, which
shows the state occupancy during a single pulse of Milnes’ protocol.
With high trapping tendency, the channel stays in a drug-bound (blues)
states during the interpulse interval, while with low trapping tendency
the channel rapidly returns to a closed or inactivated state. Figure 1D
shows the response and state occupancies when a predetermined
elongated AP signal is applied. In this case, both drugs remain
bound between pulses (APs). Since the trapping tendency of the
drugs is not strongly reflected within the state occupancy under an
AP-clamp, it raises the question of whether we need to include these
complex mechanisms when simulating the effect at the AP level.

For certain compounds, the SD model allows us to investigate
complex binding/unbinding mechanisms and how such drug-channel
interactions contribute to changes in the AP. The simpler CS model,
which does not capture drug-channel interactions, is often thought to
oversimplify drug effects on ion channels, thus providing inaccurate
predictions of a drug’s arrhythmogenic potential. However, inclusion of
complex drug-binding features significantly increases the number of
model parameters and enhances the challenge of accurately
parameterising the model (Whittaker et al., 2020).

In this study, we compare the complex SD model with the simpler
CS model, and the conditions under which these models are similar. In
particular, we compare and assess the differences of either model, as
judged from the predicted effects on the AP, APD and qNet. As in the
example above, we will look at two SD model parameterisations
representing “synthetic drugs” with properties similar to dofetilide
(high trapping tendency) and verapamil (low trapping tendency),
and we compare model predictions under different protocols. We
further identify drug properties (SD model parameterisations) where
AP effects of the SD and CS models are indistinguishable.

2 Materials and methods

We first describe the hERG channel models used in this study,
then the procedure used to make the hERG channel models
comparable. Next, we describe the AP model, synthetic drugs,
and protocols used to compare the hERG channel models. The
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hERG channel models are included as part of the AP models for
comparing their effects on APs. Finally, we explain the details of the
sensitivity analysis performed on the state-dependent drug block
(SD) model and the metrics used to quantify the difference in
the APs.

As an overview, we take the SD model, use it as a reference to
calibrate the ionic conductance of the conductance scaling drug
block (CS) model, then input these hERG channel models into an
AP model for AP comparison.

2.1 hERG channel base-model

The hERG channel base-model used in this study is the model by
Li et al. (2016), as shown in Figure 1A in black. It is a six-state
Markov model with two inactivated closed (IC) states, two closed
(C) states, an inactivated open (IO) state, and an open (O) state.
Scaling the ionic conductance of the hERG channel base-model,
which is equivalent to inhibiting the hERG current, gives the
conductance scaling drug block (CS) model. Extension with drug
bound states of open bound (O*) state, inactivated open bound

(IO*) state, and closed bound (C*) state, to the hERG channel base-
model gives the SD model, as shown in Figure 1A (both black and
blue components).

2.2 State-dependent drug block model of
hERG

The SD model is based on the model by Li et al. (2017). The
transition rate parameters for the hERG channel base-model are taken
from Li et al. (2016), Li et al. (2017). The pharmacodynamic component
is described by the drug bound states of open bound (O*) state,
inactivated open bound (IO*) state and closed bound (C*) state, and
their respective transition rates as shown in Figure 1A.

In this model, compounds can bind to the O or IO states of the
hERG channel and transition to the O* or IO* states, respectively,
with a binding rate (Kb) given by

Kb � Ku × Emax D( ), (1)
� Ku × Kmax ×

Dn

Dn + ECn
50

, (2)

FIGURE 1
(A) The six-state model by Li et al. (2016) (in black) and its extension to model drug block and trapping by Li et al. (2017) (black and blue states). (B)
Fractional block predictions for 10 paces of Milnes’ protocol (top) for the SD model with a trapped drug, dofetilide (middle) and a non-trapped drug,
verapamil (lower). The SD model’s response (blue) is overlaid on the experimental data (orange) from Li et al. (2017). (C) Steady state response (after
1,000 paces) for the SDmodel during a single step of Milnes’ protocol, for a drug-free (left), trapped (middle), and non-trapped configuration (right).
The lower row shows the state occupancy: the fraction of channels in any one state at a given time. (D) Like panel C, but using a predetermined elongated
AP signal (1 s) instead of a rectangular pulse (25 s). For comparison, the grey lines in each column of panels C andD show the data from the other columns.
Note that the labelling of the IC and C states, adapted from the original model, does not always correspond to their respective physical states.
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Where Ku is the unbinding rate and Emax is a sigmoid function
describing a drug’s response at concentration D. The function is
scaled by Kmax, the maximum response of a drug when it is at its
saturating concentration. Finally, n is the Hill coefficient and EC50 is
the drug concentration when the binding rate is at 50% of its
maximum. The compound can be “trapped” in the C* state with
a trapping rate (Kt) that is fixed at Kt = 3.5 × 10−5 ms−1 (Li et al.,
2017). The rate at which the drugs get “untrapped” (Kn) is defined as

Kn � Kt × X V( ), (3)
� Kt ×

1

1 + e− V−Vhalf−trap( )/6.789, (4)

where Vhalf−trap is the membrane voltage when Kn is half the
trapping rate Kt. According to Li et al. (2017), the function X(V) is
adapted from the hERG channel’s steady state activation of the
O’Hara et al. (2011) model. A trapped drug can be modelled with
either a high trapping rate (Kt) or a low untrapping rate (Kn), and in
this case Vhalf−trap is the only parameter that controls the ratio of
trapping to untrapping rate. Finally, the transition rate from the IO*
state to the IO state, Kr, is defined to maintain the microscopic
reversibility of the system.

2.3 Calibration of a simple conductance
block model

To reveal how the SD model alters IKr and the AP, we compared
the SD model with a simple instantaneous full-state drug block
model, the CSmodel. To ensure that the SDmodel and the CSmodel
are comparable, we use simulated data from the SD model to
calculate the appropriate scaling of the CS model to ensure that
the peak IKr of both models is equal, as detailed below.

The CS model is equivalent to modelling the current
inhibition by scaling the ionic conductance thereby reducing
the overall flow of ions across the channel. This model assumes
that the half maximal inhibitory concentration (IC50) of a drug
on the hERG channel does not change with the experimental
protocols. We note that the IC50 of a drug can be protocol-
dependent as demonstrated in the later sections, and we
acknowledge the differences in the results. However,
investigation into such a dependence is not the aim of
this study, therefore we use Milnes’ protocol (Milnes et al.,
2010, see Section 2.6) to simulate the models as in Li et al. (2017).

The ionic conductance of the hERG channel was scaled to
capture the drug response, such that the peak current of the CS
model under Milnes’ protocol matched that of the SD model. A
schematic of the fitting procedure is shown in Figure 2. We assumed
that the SD model captures the experimental data presented in Li
et al. (2017), which can be used as a reference point. For each
“synthetic drug” (see Section 2.5), the SDmodel IKr was simulated at
a range of drug concentrations using Milnes’ protocol. The peaks of
these IKr were normalised and then fitted to the Hill curve. The Hill
curve parameters—the Hill coefficient and IC50—were determined
by minimising the mean squared error between the peak currents
and the Hill curve. The ionic conductance of the CS model was then
scaled with the drug response output obtained from the Hill curve
function. The peak hERG current of the CS model will then have the

same peak current as the SD model for a given drug and
concentration, as required.

The optimisations of the Hill curves to the peak of hERG
currents were performed with the covariance matrix adaptation-
evolution strategy (CMA-ES) algorithm (Hansen et al., 2003) in the
PINTS software (Clerx et al., 2019).

2.4 AP model

To study the effect of the hERG channel model at the level of
APs, the AP model by Dutta et al. (2017) was used. The model was
based on the Li et al. (2017) model, and to allow better quantification
of each individual current on the AP, the ionic conductances of five
currents were scaled (Dutta et al., 2017), including IKr, the slow
rectifier potassium current (IKs), the inwardly rectifying potassium
current (IK1), the L-type calcium current (ICaL), and the late sodium
current (INaL). The AP model, when its hERG channel component is
the SD model, is referred to as the AP-SD model; the AP model with
its hERG channel component replaced with the CS model is referred
to as the AP-CS model.

2.5 Synthetic drugs

The binding dynamics on the hERG channel of all of the twelve
drugs in Li et al. (2017) were taken as the synthetic drugs in this
study; the parameters of the 12 synthetic drugs are provided in the
Supplementary Material. Here, dofetilide and verapamil were
chosen as examples to compare trapping and non-trapping
properties of the hERG channel, respectively. Although verapamil
is a multi-ion channel blocker, we considered only its effect on the
hERG channel, so any multi-channel effects on the AP were
deliberately neglected, reflecting the focus of this study being
only on the hERG channel binding effects on the AP. The
synthetic drug with parameters describing dofetilide is referred to
as example drug T, while the synthetic drug with parameters
describing verapamil is referred to as example drug N. Only these
two drugs out of the 12 synthetic drugs tested are shown in the main
results, and the results of the remaining synthetic drugs are provided
in the Supplementary Material.

2.6 Protocols

Four voltage protocols were used in this work (Figure 6A).
Firstly, Milnes’ protocol as modified by Li et al. (2017) from that of
Milnes et al. (2010). This modified Milnes’ protocol aims to identify
trapped and non-trapped drugs. Experimental data obtained from
the stimulation with this protocol was used to fit the parameters of
the SD model. Therefore, this modified Milnes’ protocol was used as
a reference for the model comparison.

The remaining voltage protocols, Pneg80, P0, and P40, were
taken from Gomis-Tena et al. (2020). These protocols were designed
so that the channel’s state occupancy of a certain state is maximised.
When the hERG channel model is stimulated by the Pneg80, P0, and
P40 protocols, the channel will most likely be in the closed, open,
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and inactivated states, respectively, as discussed in Gomis-Tena et al.
(2020). Details of all protocols are given in the Supplementary
Material.

2.7 Sensitivity analysis

The behaviour of the drug-related component of the SDmodel is
governed by its transition rates, which in turn are defined by the five
drug-dependent parameters. To understand the role of each drug-
related parameter in the SD model, we performed a sensitivity
analysis on the APD90 difference between the AP-SD and the
AP-CS model.

First, we simplified the SD model by normalising the drug
concentration D input to the EC50 value. The normalised drug
concentration is therefore defined as

~D � D

EC50
. (5)

This reduces the number of parameters to four.
Second, we observed that the Hill coefficient n affects only the

range of drug concentration where AP prolongation and early
after depolarisation (EAD)-like behaviour are observed. To
confirm this, we varied the value of n for each synthetic drug
and monitored the APD90 differences between the two models.
The APD90 differences were quantified by the root mean square
difference (see Section 2.8). The root mean square difference
(RMSD) of APDs fluctuated within a range of only 25 ms as n was
varied (see Supplementary Material). The model was thus further

simplified to three parameters, namely, the Vhalf−trap, Kmax, and
Ku. We then performed a detailed sensitivity analysis on this 3-
dimensional space.

In the sensitivity analysis, we repeated the model comparison
procedure as shown in Figure 2 for a range of parameter values in the
simplified SD model. The three parameters of the simplified SD
model describe a hypothetical drug which is termed a “virtual drug”.
Sweeping through the parameter space effectively performed a
virtual drug screening for all possible drug binding kinetics of
hERG, within the SD model.

The two models, the AP-SD model and the AP-CS model, were
considered to be similar if the RMSD of the APD90 values are small.
The parameter space around the boundary surface, where the RMSD
values between the two models are less than 30 ms, were sampled
more densely to obtain higher resolution.

2.8 Metrics for APD90 difference

The RMSD and themean difference (MD) between the APD90 of
the AP-SD and the AP-CS models were used to quantify the model
comparison. The RMSD measures the magnitude of the APD90

difference between the models, and is given by

RMSD �
��������������∑N

i�1 SDi − CSi( )2
N

√
, (6)

where N is the total number of data points, excluding data points
where EAD-like behaviours are observed, and SD and CS are the

FIGURE 2
A schematic of the process of fitting the CSmodel to the SDmodel. First, simulations are run with the SDmodel and Milnes’ protocol at various drug
concentrations. The peak of the hERG currents are extracted and normalised, and a Hill curve is fitted to the normalised data points. This Hill curve is then
used to scale the ionic conductance of the CS model. Finally, the simulated APs of both models are compared.
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APD90 values of the AP-SD model and the AP-CS model,
respectively.

The MDmeasures the actual difference between the twomodels,

MD � ∑N
i�1 SDi − CSi( )

N
. (7)

A positive value of MD implies that the sum of the APD90 values
of the AP-SD model are higher than the AP-CS model, while a
negative value implies the opposite.

The signed RMSD was used to indicate the magnitude and
direction of the APD90 difference between the AP-SDmodel and the
AP-CS model:

RMSDsigned � RMSD ×
MD

|MD|. (8)

2.9 Simulations

All simulations, including voltage-clamp and current-clamp
experiments, were run with Python 3.8 using Myokit 1.33 (Clerx
et al., 2016) with the CVODE solver (Hindmarsh et al., 2005). The
absolute tolerance and relative tolerance were set to 10−7 and 10−8,
respectively.

3 Results

3.1 CS model replicates SD model at steady
state for a trapped drug example

Figures 1B, C show that the SD model can capture the
trapping properties of a drug, observed in the lack of recovery
from block and the state occupancy of drug bound states.
However, it is not clear whether a simpler AP-CS model could
replicate the AP prolongation by the AP-SD model that has state
dependency and a trapping mechanism included. We
systematically compared the APs of the two models for the
example drug T and the example drug N using the methods
described in Section 2.3; Figure 2.

Figure 3A shows the IKr of both the SD model and the CS
model with an example drug T present there throughout under
Milnes’ protocol. By design, the peaks of the IKr of the two models
are the same at various drug concentrations of the example drug
T, which give the same dose-response effect. The APs of the two
models (the AP-SD model and the AP-CS model) with the
example drug T are given in Figure 3B, showing two pulses of
the AP at steady state, together with their corresponding IKr. As
the drug concentration increases, the amplitude of the IKr
decreases, and the APD increases. The two models show
similar AP behaviours, although the AP-SD model simulated
IKr at 10 nM of example drug T has a bigger amplitude and a
shorter period when the IKr is positive. The differences give rise to
a slightly shorter APD because IKr aids in the repolarisation of
APs. Moreover, both models show an EAD-like behaviour at the
same drug concentration (300 nM) of the example drug T.

In Figure 3C, the APD90 values of APs simulated from the AP-SD
model and the AP-CS model for an example drug T were calculated.

APs that show EAD-like behaviours are indicated with an asterisk. The
APD90 values of bothmodels are similar, consistent with theAPs shown
in Figure 3B. Additionally, the qNet values, a proarrhythmic risk
marker, of example drug T shown in Figure 3D are similar for both
models. Therefore the CS model can replicate the SD model for an
example drug T at steady state.

We further compared the APs of the models for an example drug
N, a “non-trapped” drug; the non-trapping phenotype of the drug is
captured by the small value of Vhalf−trap. Figure 4A shows the IKr of
the two models under the effect of the example drug N. The IKr
simulated by the SD model show dips after the initial increase at
drug concentrations higher than or equal to ~300 nM. Since the
peak current is used to define the inhibition level of a drug, which is
commonly done for IC50 calculations, the total amount of IKr
simulated by the CS model is higher than the SD model.

Figures 4B, C compare the APs and their corresponding IKr of
the AP-SDmodel and the AP-CSmodel for the example drug N. The
IKr and the APs are significantly different between the two models.
At high drug concentrations the AP-SD model shows a longer APD
and a lower IKr amplitude than the AP-CS model. The AP of the AP-
SD model is prolonged more than the AP-CS model and displays
EAD-like behaviours at lower drug concentration. The example
drug N, for which the untrapping rate is higher and the binding rate
is lower than the example drug T, generated lower APD90s with the
AP-CS model. Similarly, the qNet values of example drug N
(Figure 4D) are different between the two AP models. Example
drug T and example drug N are taken as examples to show the
difference in APD90 and qNet for drugs with varying trapping
tendency. The same analysis was repeated for other drug
compounds (see Supplementary Material).

3.2 Trapping properties are apparent in
transient phase

The main difference between the two drug block models is the
inclusion of the trapping mechanism in the hERG channel model.
The feature of this mechanism is the accumulation of the drug
compound in the channel due to “trapping”. Figures 5A–D show
the progression of the APs and their IKr for the example drug T
and the example drug N with the two AP models. In Figure 5A,
the IKr decreases gradually with time for the AP-SD model with
the example drug T, and the AP prolongation increases. In
contrast, the IKr and the APs for the example drug N in the
AP-SD model are relatively stable, as shown in Figure 5B. The
AP-SD model displays a shorter transient phase with the example
drug N than with the example drug T, which is due to the
differences in the trapping phenotype of these synthetic drugs.
Figures 5C, D compare the AP-CS model with the example drug T
and the example drug N, respectively, and show that the APs and
the IKr do not change much between pulses.

The APD90 values from Figures 5A–D are given in Figures 5E, F
for the example drug T and the example drug N, respectively. For the
example drug T (Figure 5E), the AP-SD model showed a longer
transient phase, then stabilised to generate the same APD90 as the
AP-CS model. By contrast, the two models with the example drug N
(Figure 5F) had a short transient phase with different APD90 values
at steady state.
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3.3 AP prolongation is dependent on the
protocol used to stimulate the SD model

In all model comparisons shown in Figures 3, 4, we have
assumed that the IC50 of a drug is independent of the protocol
used to measure its response. Thus, the IC50 can be used to replicate
drugs effect in any drug block models (Mirams et al., 2011).
However, the assumption does not always hold (Kirsch et al.,
2004; Yao et al., 2005). Here, we demonstrate the change in the
APD90 when different protocols are used to generate the IKr for drug
characterisation. Figure 6A shows Milnes’, Pneg80, P0, and P40
protocols that are used to stimulate the SD model. The normalised
peak of the IKr simulated with each of the given protocols for both
the example drug T and the example drug N are shown in Figures
6B, C, respectively. The example drug T (Figure 6B) yields similar
dose-response curves for all of the protocols, except for the
P40 protocol, while the example drug N (Figure 6C) displayed
different dose-response curves for all protocols. Using the Hill
curves in Figure 6C to characterise the drug effect for the CS
model (see Section 2.3; Figure 2), the APs of the AP-CS model
were simulated and quantified. Figure 6D shows the APD90s of the
simulated APs with an example drug N. While using the
Pneg80 protocol gave similar APD90s to using Milnes’ protocol,
the use of P0 and P40 protocols generate higher APD90 values,

causing EAD-like behaviours to appear at lower concentrations of
the example drug N. Example drug T and example drug N are taken
as examples. The Hill curves for all the protocols with the other drug
compounds are given in the Supplementary Material.

3.4 Drugs were approximated to have lower
steady state APD90 values with the AP-CS
model

A sensitivity analysis was performed on the simplified SD
model as described in Section 2.7, where the SD model was
simplified to just three drug-related parameters—Vhalf−trap,
Kmax, and Ku—without loss of generality. Given a virtual drug
from the parameter space, the procedure shown in Figure 2 was
repeated (Section 2.3). The APD90 differences between the AP-
SD model and the AP-CS model were measured by the signed
RMSD (Equation 8).

Figure 7A shows the signed RMSD for combinations of the three
parameters. Each point represents a virtual drug, while its color
indicates the APD90 difference between the AP-SD model and the
AP-CS model when the virtual drug is added. The majority of the
virtual drugs resulted in a positive signed RMSD value, indicating
that the AP-SDmodel generated APs that had longer durations than

FIGURE 3
The AP-CS model can provide a reasonable approximation of the AP-SDmodel for an example drug T. (A) The matching of the peak hERG currents
simulated by both drug block models under Milnes’ protocol (top row) at various drug concentrations of an example drug T. (B) The AP (first row) and its
hERG current (second row) for the AP-SD model and the AP-CS model at steady state. (C) The APD90 values of the AP-SD model and the AP-CS model
under the effect of example drug T. APs that show EAD-like behaviour are indicatedwith an asterisk. (D) The qNet values of the AP-SDmodel and the
AP-CS model under the effect of example drug T. qNet values of APs with EAD-like behaviours are not shown.
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the AP-CS model. It is also shown that the signed RMSD shifts from
positive to negative as Kmax decreases. The virtual drugs are
generally predicted to cause shorter AP prolongation when using
the AP-CS model.

The parameter space where the two models give a similar APD90

value (RMSD < 30 ms) is limited, as shown in Figure 7B. For these
parameters, the AP-SD model and the AP-CS model are
interchangeable when we measure only the APD. The triangles
show the positions of the synthetic drugs in the parameter space.
Synthetic drugs that lie within the boundary surface are listed in the
Supplementary Material.

The results show that Vhalf−trap plays a small role in affecting the
differences between the AP-SDmodel and the AP-CS model. Kmax and
Ku are the major driving forces for the changes in the APD90 difference
between the two models. Furthermore, at low values of Kmax, Ku does
not affect the APD90 difference as much; for large Kmax, the two models
differ the most around Ku ≈ 5 × 10−4. A different viewing angle of
Figure 7B is available in the Supplementary Material.

4 Discussion

This study has compared the AP simulated by the AP-CS model
and the AP-SD model. The CS model reduces the ionic conductance to

approximate the effect of IKr reduction induced by drug binding to the
hERG channel, while the SD model includes the state dependency and
the trapping mechanism to replicate the drug’s effect. Our comparison
intended to explore whether the more complex SD model and the
simpler CS model give the same prediction of hERG inhibitor-induced
APD change. A sensitivity analysis of the simplified SDmodel, with the
Vhalf−trap, Kmax and Ku parameters, showed that there is only a small
region of the parameter space where the two models produce similar
steady state APD90 values (RMSD of the steady state APD90s < 30 ms).
The AP-CS model suggested that the majority of the virtual drugs
induce lower steady state APD90 values than the AP-SDmodel, leading
to possible lower arrhythmic risk.

AP simulations of the AP-SD model and the AP-CS model with
an example drug T, a trapped drug, show similar AP prolongations and
qNet values at steady state (Figure 3). The resulting APD90 differences
between the models contradict our expectations, as it was hypothesised
that the AP-SD model with a trapping mechanism would predict
trapped drugs like dofetilide to cause more AP prolongation
(Pearlstein et al., 2016). It was believed that the accumulation of the
drug at the channel (“trapped”) could inhibit the current more as
compared to no trapping, thus prolonging the APD further. On the
other hand, for the example drug N, a non-trapped drug, the AP-CS
model predicted less AP prolongation than the AP-SD model
(Figure 4), conforming to expectations. The difference in the qNet

FIGURE 4
The AP-CS model is less successful at replicating the model behaviour of the AP-SD model for an example drug N. (A) The comparison of the IKr
simulated by both the SD model and the CS model after calibration of the hERG ionic conductance for an example drug N. The top row shows Milnes’
protocol used to stimulate the hERG channel models. (B) The AP (first row) and its hERG current (second row) for the AP-SDmodel and the AP-CSmodel
at steady state. (C) The APD90s of the AP-SDmodel and the AP-CSmodel under the effect of an example drug N. APs that show EAD-like behaviour
are indicated with an asterisk. (D) The qNet values of the AP-SDmodel and the AP-CS model under the effect of example drug N. qNet values of APs with
EAD-like behaviours are not shown.
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values for example drug N suggest that the drug could be categorised in
different risk categories if the AP-SDmodel or theAP-CSmodel is used.
The results suggest that the AP prolongation prediction of drugs like
dofetilide does not differ between the AP-SD model and the AP-CS
model.

The effects of drug trapping in the hERG channel become
apparent during the transient phase as it takes more pulses to
achieve steady state (Figure 5). Trapped drugs accumulate at the
channel, without recovering from the block during the interpulse
interval, and decrease the current pulse by pulse until steady state,
creating a longer transient phase; non-trapped drugs unbind and
rebind to the channel in between pulses of protocol, seemingly
achieving steady state. However, for the example drug T, the AP-SD
model and the AP-CS model predict similar steady state APD
changes, suggesting that trapping is likely not a key driver for the
differences in APD changes.

To further explore the observation, our sensitivity analysis on the
drug-related parameters of the SD model demonstrated that the AP-
SD model and the AP-CS model predict significantly different AP
prolongation for the majority of the virtual drugs. Therefore,
modelling drug effect by simply reducing the ionic conductance is
most likely insufficient to capture the dynamics of drug binding,
especially at the AP level. However, we also observed only a small
change in the APD90 difference between the two models when
Vhalf−trap changes, which implies that no extra dynamics can be
observed from the addition of the Vhalf−trap parameter or the
trapping component, confirming our previous observation.
Furthermore, the parameters controlling the binding and
unbinding rates—Kmax and Ku—determine the difference in the
steady state AP prolongation predictions between the two models
(Supplementary Figure S13). We note that it does not imply Vhalf−trap

has no influence on the APD90 values; although the difference in the

FIGURE 5
The accumulation of drug compounds at the channel due to being trapped is well-observed in the transient phase. Example drug T shows a longer
transient phase than an example drug N in the SDmodel. The first six pulses of AP (top row) and its hERG current (bottom row) for the AP-SDmodel after
the addition of (A) an example drug T and (B) an example drug N. The vertical black dashed lines indicate the addition of drug into the system after
1,000 pulses of pacing. The first six pulses of the AP (top row) and the hERG current (bottom row) for the AP-CS model after the addition of (C)
example drug T and (D) example drug N, of which its hERG ionic conductance is scaled to model the drug effect. (E) The APD90 values of both the AP-SD
model and the AP-CSmodel are compared at 100 and 200 nMof example drug T. (F) The APD90 values of both themodels are compared at 1,000 nM and
104 nM of example drug N.
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FIGURE 6
The Hill curves for an example drug T and an example drug N are protocol dependent, thus affecting the resultant APD prolongation. (A) The four
protocols used to calibrate the hERG ionic conductance from the SD model. Note the differences in the time axes for visualisation purposes. The Hill
curves of the peak IKr simulated from the SD model under the protocols given in panel A for (B) an example drug T and (C) an example drug N. (D) The
APD90s of the AP-CS model under the effect of an example drug N with its hERG conductance scaled based on the Hill curves shown in panel C.

FIGURE 7
The AP-SD model is most likely to return higher APD90s than the AP-CS model. (A) The APD90 differences for combinations of Vhalf−trap, Kmax and Ku
parameters. The color of themarkers indicate the signed RMSD of each virtual drug in the parameter space. (B) The grey circles are parameter value combination
where the signed RMSD is between −30 and 30 ms. The triangles are the synthetic drugs taken from Li et al. (2017), color coded with their signed RMSD value.
These triangles are projected to the Kmax—Ku plane as red circles for better visualisation. Some data points are missing due to numerical issues with these
parameter combinations.
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APD90 values are small, the APD90 values vary withVhalf−trap as shown
in Supplementary Figures S13, S14. This difference in AP
prolongation for majority of the parameter space implies that one
cannot assume that with the same baseline AP model, switching
between the SD model and the CS model can achieve the same
prediction results as the outcome of the model training. It is not
possible to determine the best model in this study as it depends on
what type of input data the model is trained on. Since it is
common practice to acquire IC50 data, it is much pragmatic to
use the CS model. Without re-evaluation of a drug on the SD
model, it cannot be assumed that the SD model can replace the CS
model, or vice versa. It is important that the model is used within
the context of use which the model is trained and validated on
(including the type of input data).

One of the limitations of this study is that we assumed that the
SD model can replicate the experimental data perfectly and thus
fitted the CS model to the Hill curve generated from the SD model.
Moreover, the six-state Markov model and the Dutta et al. (2017)
model, two well-known models, were used as the hERG base-model
and AP base-model, respectively, but changing the choice of the
models could affect the behaviour of the APs and hence the
differences in APs between the SD model and the CS model
(Clayton et al., 2020; Lei et al., 2020). Furthermore, in the
sensitivity analysis, the ranges of the parameter values were
determined by the minimum and maximum of each of the
parameters of the synthetic drugs, and the trapping rate of the
SDmodel was fixed in the samemanner as it was done in the original
model, limiting the exploration of the model dynamics. Finally, we
emphasise that our focus is on the drug effect on the hERG channel
only, and specifically on the effect of inclusion of the state-
dependent drug binding of the hERG channel. Investigation of
the effect of other ion channels is out of scope of this study.
Therefore, this study is not an integrative and comprehensive
assessment of the change in AP or proarrhythmic risk of the
drug compounds, particularly for a multi-channel blocker such as
verapamil.

In this study, we have shown that the APD90 difference
between the AP-SD model and the AP-CS model for the
example drug T and the example drug N is not consistent with
their trapping phenotypes, which are differentiable only in the
transient phase. The ratio of trapping to untrapping rate, defined
in the SD model with Vhalf−trap, does not affect the APD90

differences between the two models. The binding rates and
unbinding rates, on the other hand, are the main determinants
of the APD90 differences. This study demonstrates the
importance of modelling drug binding and highlights the need
for improved understanding of drug trapping which can have
implications for the uses in drug safety assessment.
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