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Summary. When modelling time series, it is common to decompose observed variation
into a “signal” process, the process of interest, and “noise”, representing nuisance factors
that obfuscate the signal. To separate signal from noise, assumptions must be made about
both parts of the system. If the signal process is incorrectly specified, our predictions using
this model may generalise poorly; similarly, if the noise process is incorrectly specified, we
can attribute too much or too little observed variation to the signal. With little justification,
independent Gaussian noise is typically chosen, which defines a statistical model that is
simple to implement but often misstates system uncertainty and may underestimate error
autocorrelation. There are a range of alternative noise processes available but, in practice,
none of these may be entirely appropriate, as actual noise may be better characterised as
a time-varying mixture of these various types. Here, we consider systems where the signal
is modelled with ordinary differential equations and present classes of flexible noise pro-
cesses that adapt to a system’s characteristics. Our noise models include a multivariate
normal kernel where Gaussian processes allow for non-stationary persistence and vari-
ance, and nonparametric Bayesian models that partition time series into distinct blocks
of separate noise structures. Across the scenarios we consider, these noise processes
faithfully reproduce true system uncertainty: that is, parameter estimate uncertainty when
doing inference using the correct noise model. The models themselves and the methods
for fitting them are scalable to large datasets and could help to ensure more appropriate
quantification of uncertainty in a host of time series models.

Keywords: time series, ordinary differential equations, noise model, non-stationary
processes, Bayesian inference, Gaussian process, Bayesian nonparametrics
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1. Introduction

Time series data are ubiquitous in many fields of scientific inquiry. In this paper, we
focus on time series data that are assumed to obey a (potentially nonlinear) parametric
model f(t; θ), a function of time t and model parameters θ. We model a noise-free
trajectory {ȳi}Ni=1 at time points {ti}Ni=1 according to,

ȳi = f(ti; θ). (1)

Often, scientific knowledge about a given system does not specify f directly but rather
suggests an ordinary differential equation (ODE) or system of ODEs with f as their
solution. In the following, we assume that these equations are numerically solvable, so
that the mean or noise-free trajectory† f(t; θ) is readily available for given values of t
and θ: this is known as solving the “forward problem”. Here, we consider the so-called
“inverse problem”: where, given a time series of noisy observations, the aim is to infer
the values of θ that have generated the observations. A wide variety of inference tasks
fall into this category, including parameter estimation for enzyme kinetics, biochemical
pathways, and regulatory dynamics (Milstein, 1981; Moles et al., 2003; Silk et al., 2011).
The Bayesian approach to the inverse problem, which we adopt in this paper, yields
a posterior probability distribution over model parameters that conveys uncertainty in
parameter estimates implied by data (Gelman et al., 2013).

When solving the forward problem, assumptions made about the form of the noise
can substantially change estimated posterior uncertainty of θ (Lambert et al., 2020).
Notably, when the noise model is misspecified, posterior variance in model parameters
may be drastically underestimated or overestimated. Misspecification may also lead to
biased estimates. The standard assumption of independent and identically distributed
(IID) Gaussian noise is applicable in some cases, but there are many other possible
forms. For example, consecutive observations may be correlated due to imperfections in
measurement rather than the shape of the signal itself; the magnitude of measurement
noise may scale with function values; there may be time periods with higher observation
volatility due to environmental variation; or even a mixture of these various types of noise
within a single time series. Non-Gaussian and non-IID noise is also likely to appear in
cases of time series model misspecification: when the best available model does not
coincide with the hypothetical true process which generated the data, regions of poor
fit may be accompanied by residual autocorrelation and spikes in the magnitude of the
noise terms.

In applied circumstances, the exact noise process is never known. Some form for the
noise must therefore be assumed, with consequences for inference. Whatever choice is
made should have some rational basis but be flexible enough to account for the particular
sample of data to hand. In this vein, parametric models likely fall short and, instead,
more adaptable non-parametric methods prosper. Here, we describe a number of non-
or semi-parametric models for capturing noise processes that defy characterisation into
existing boxes. Through a host of toy examples with predetermined noise processes,
we show that parameter inference using our noise models faithfully reproduces the true
posterior distributions; that is, those distributions that result when using the correct

†In general, when f is obtained by numerically solving ODEs, some numerical error may occur.
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noise process. Our noise models, and the methods for fitting them, are designed to scale
well with data size and could be used across a large range of ODE models for time series.
To facilitate their use, we have designed our noise models and fitting routines to work
with Pints software (Clerx et al., 2019) – a general purpose Python library for fitting
time series models, available from https://github.com/pints-team/pints. The code for
this paper is available from https://github.com/rcw5890/flexnoise.
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Fig. 1: Two noise processes for time series modelling. Panel (A) shows how non-
stationary covariance kernels with continuously time-varying parameters can be used to
learn the covariance matrix; and panel (B) shows how a covariance matrix can be built
from non-overlapping constituent blocks.

Figure 1 gives an overview of the proposed noise model and the two different meth-
ods we use to generalise it to non-stationary noise. In both panels, time series data is
illustrated with non-IID noise: the noise terms increase in magnitude as time proceeds.
Panels A and B illustrate the two Bayesian methods we consider for learning appro-
priate covariance matrices. The first method, shown in panel A, uses a non-stationary
covariance kernel whose parameters can vary continuously over time. As illustrated, this
method is capable of learning a covariance matrix which steadily increases in magnitude
along the diagonal. The next method, shown in panel B, divides time series into multiple
regimes each with their own noise parameters. While both of these Bayesian methods
allow a high degree of flexibility, they can be constrained via their prior distributions.
Although we rely on a joint multivariate normal distribution for the data, and employ
the Gaussian process in one of our noise processes, the methods presented here differ
substantially from a Gaussian process regression, as we assume that the noise-free signal
does not deviate from the given parametric model f . In §2.4, further discussion of the
relationship between our methods and Gaussian processes is provided.

The remainder of this paper is organised as follows. In §2, the multivariate normal
distribution is introduced as a general model for noisy time series data, and we show
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how an appropriate covariance matrix can be learned from data using positive definite
kernels. In §3 and §4, we describe two different methods to generalise these kernel
methods to cases where the structure of noise changes over time. In §3, we describe a
method where the parameters of a kernel vary smoothly over time governed by Gaussian
processes. In §4, we consider clustering methods which divide a time series into different
regimes, with the kernel parameters taking different values in each of these. In §5, we
discuss performance considerations for long time series, and §6 shows the application
of our methods to real data from experiments conducted on the hERG potassium ion
channel.

2. The multivariate Gaussian likelihood for time series noise

The models we propose as flexible noise processes both depend on a suitably general
distributional assumption governing the difference between observed and ODE-predicted
data, and we use the multivariate normal. To learn the covariance matrices of the
multivariate normal, we use positive definite kernel functions. This section introduces
these concepts and shows how they can be used to correctly infer parameter posteriors
for a time series model with stationary but non-IID noise.

2.1. Description of multivariate likelihood
The dataset consists of time points {ti}Ni=1 and corresponding noisy data {yi}Ni=1. A
typical modelling assumption is to treat the noise on each data point as IID Gaussian
with a variance parameter σ2, so that,

yi = f(ti; θ) + εi, i = 1, . . . , N, (2)

εi
IID∼ N (0, σ2). (3)

Our first step is to generalize eq. (3) so that the variance of noise terms can vary (i.e.
allow the noise to be non-identically distributed), and each noise realisation can be corre-
lated with its neighbours (i.e. be non-independent). A multivariate Gaussian can handle
both of these generalisations, where we model a random vector, y = (y1, . . . , yN )>, as
having a mean, f(θ) = (f(t1; θ), . . . , f(tN ; θ))>,

y ∼ N (f(θ),Σ). (4)

For appropriate values of the covariance matrix Σ, this distributional assumption encom-
passes a wide variety of noise forms which may include correlated and heteroscedastic
noise terms. For example, eq. (4) could describe heteroscedastic noise which scales with
the magnitude of the trajectory with Σ = diag(f(θ)σ2). For autocorrelated noise terms,
Σ would be dense.

2.2. Learning the covariance matrix, Σ
Multiple methods have been proposed for inference of covariance matrices (Hoffbeck and
Landgrebe, 1996; Lam and Fan, 2009; Diggle and Verbyla, 1998; Bickel and Levina, 2008;
Cai and Liu, 2011; Schäfer and Strimmer, 2005). A standard Bayesian approach places
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a prior on Σ and infers it along with ODE model parameters, θ. Typical choices for
priors include the conjugate inverse-Wishart (Gelman et al., 2013; Huang and Wand,
2013), or a prior based around the LKJ correlation matrix (Lewandowski et al., 2009;
Stan Development Team, 2016). However, these methods are not designed to handle
the covariance of a single time series. For a single time series obeying eq. (4), there is
just one multivariate data point (that is, the vector y) available to inform the matrix Σ.
With such limited data, standard methods for estimating covariance matrices have too
much freedom, resulting in dense matrices that overfit the data.

Our strategy is to impose a positive definite covariance function C : R × R → R,
which generates a covariance matrix according to the rule,

Σij = C(ti, tj). (5)

For example, heteroscedastic errors, where Σ = diag(f(θ)σ2), could be represented by
the following covariance function:

C(ti, tj) = f(ti; θ)σ
2δij . (6)

where δij = 1, if i = j; 0, otherwise. In this paper, we consider positive definite kernels
which are flexible enough to capture a wide variety of noise forms, with parameters that
can, nonetheless, be learned from a single time series.

2.3. Kernels for time series noise
In this section, we introduce the kernels used throughout this paper. Notwithstanding
the important differences discussed in §2.4, much of the work on kernel functions for
Gaussian processes is applicable to ODE noise models as well, and the three kernels
we discuss have seen extensive use in Gaussian process regression. One of the most
widely used positive definite kernels is the Gaussian kernel (also called the Radial Basis
Function, or RBF) (Fasshauer, 2011),

C(ti, tj) = σ2e−(ti−tj)2/2L2

. (7)

We also consider the Laplacian kernel (Feragen et al., 2015) for specifying time series
autocovariances, since it more faithfully reproduces the types of persistence emergent
from basic univariate time series models,

C(ti, tj) = σ2e−|ti−tj |/L. (8)

The kernels in eqs. (7) & (8) are each characterised by two parameters which con-
trol the size and autocovariance in the errors. A more general class of kernels is the
Matérn (Williams and Rasmussen, 2006),

C(ti, tj) = σ2 21−ν

Γ(ν)

(√
2ν

L
|ti − tj |

)ν
Kν

(√
2ν

L
|ti − tj |

)
, (9)

where Kν is the modified Bessel function of the second kind. For ν = 1/2, the Matérn
kernel simplifies to the Laplacian kernel.
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2.4. Comparison to Gaussian processes (GPs)
Consider a function g : X → R obeying a GP with mean function m and kernel C,
i.e. g ∼ GP(m,C) (see, for example, Rasmussen (2003)). For every finite set of inputs
{ti}Ni=1, ti ∈ X , the vector of function values g = (g(t1), . . . , g(tN ))> has a multivariate
Gaussian distribution,

g ∼ N (m,Σ), (10)

where m = (m(t1), . . . ,m(tN ))> and Σ is generated as in eq. (5). This distribution,
identical with eq. (4) for m(·) = f( · ; θ), illustrates an apparent resemblance between
the multivariate normal likelihood for time series noise and the GP. Our proposed noise
model, however, differs from a GP in several key aspects:

(a) In GP regression, eq. (10) determines a prior over functions, and the posterior
over functions is inferred. Our proposed noise model uses the multivariate normal
specification as a likelihood for finite observed data, and posterior inference applies
only to the parameters of f , not the functional form of the noise-free relationship
between y and t which is assumed fixed and fully determined by θ.

(b) To handle noisy data, Gaussian process regression typically adds an extra noise
term—often IID Gaussian. No such terms are used in our multivariate normal
noise process.

That is, in full, the likelihood for our multivariate normal model is given by eq. (4),
with covariance matrix given by eq. (5). An example of the utility of the multivariate
normal noise process is shown in Figure S1. In this example, we show that the Laplacian
kernel can faithfully capture autoregressive order 1 (AR(1)) noise in an ODE time series
model, enabling accurate posterior inference for the ODE model parameters.

3. Flexible noise for ODEs using Gaussian processes

In this section, we describe the first of two flexible noise processes which can learn
effective covariance matrices from a time series. Standard positive definite kernels such
as eq. (7) and eq. (8) are appropriate for simple covariance matrices. They are, however,
stationary: depending only on the difference between two time points and not on absolute
time. In this section, we consider models that allow kernel parameters (for example, σ
and L in eq. (8)) to vary smoothly over time, allowing distinct sections of a time series to
have different noise magnitudes and persistences. First, a brief overview of existing work
on non-stationary covariance functions is provided in §3.1. In §3.2, the non-stationary
version of the Laplacian kernel is presented. In §3.3, inference for non-stationary kernel
parameters is introduced, and in §3.4, GP hyperparameter selection is discussed. In
§3.5, results are presented on synthetic data using the non-stationary Laplacian kernel.

3.1. Background on non-stationary covariance functions
Non-stationary covariance functions have been used for spatial modelling and Gaussian
process regression. Unlike stationary kernels which depend only on the distance between
the two inputs, in the non-stationary case, the kernel shape itself must depend on the
input location. This is expressed using the notation ks(u) for a kernel centred at location
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s and evaluated at location u. For example, for the Laplacian kernel with one dimensional
input t, we would take

kt(u) = σ(t)2e−|t−u|/L(t), (11)

with the kernel parameters σ and L being functions of the kernel centre location t.
If eq. (11) is used to construct a covariance matrix, there are no guarantees that it

will be positive definite. Instead, non-stationary modelling has relied on the following
general formula for a non-stationary positive definite covariance function:

C(xi, xj) =

∫
RN

kxi
(u)kxj

(u)du, (12)

for inputs xi, xj , u ∈ RN (Higdon et al., 1999; Paciorek, 2003). The non-stationary
version of the Gaussian RBF covariance function can be derived from this formula, which
has been used in non-stationary Gaussian process regression (Gibbs, 1998; Paciorek and
Schervish, 2004). To learn time-varying kernel parameters, a Gaussian process prior can
be placed on each (Paciorek and Schervish, 2004; Heinonen et al., 2016).

3.2. Non-stationary Laplacian covariance function
In this section, we present a non-stationary version of the Laplacian kernel. The tech-
niques presented here are equally applicable to any appropriate positive definite kernel,
however.

The one-dimensional non-stationary Laplacian covariance function is:

C(ti, tj) = σ(ti)σ(tj)

√
2L(ti)L(tj)

L(ti)2 + L(tj)2
exp

(
− |ti − tj |√

L(ti)2 + L(tj)2

)
. (13)

Eq. (13) may be derived as a special case of the non-stationary Matérn kernel (Paciorek
and Schervish, 2004); it also follows directly from the one-dimensional case of eq. (12)
using reparametrised versions of the respective stationary kernels, with the reparametri-
sations chosen to ensure that the final non-stationary covariance functions have a sensible
form (cf. eq. (3.69) in Gibbs (1998)). The logarithms of L and σ each vary over time
governed by Gaussian process priors:

logL ∼ GP(µl,Kl), log σ ∼ GP(µσ,Kσ), (14)

where µl, Kl, µσ, and Kσ are the GP hyperparameters.

3.3. Inference
Having specified a non-stationary covariance function such as eq. (13), the next task
is to infer the posterior distribution of model and covariance parameters. However,
analytic expressions for the posterior mean and variance of the Gaussian processes L(t)
and σ(t) are not available. Instead, MCMC sampling or maximum a posteriori (MAP)
estimation can be used to infer the values of L(t) and σ(t) at each time point (Heinonen
et al., 2016). MCMC sampling yields a set of samples distributed according to the
posterior distribution, while MAP estimation uses optimisation to find the parameters
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values at which the posterior distribution is maximised. For both MCMC and MAP
estimation, we recommend the use of gradient-based methods (e.g., Hamiltonian MCMC
and gradient-based optimisers) for improved convergence rates in the high dimensional
parameter space (Neal, 2011). When analytic gradients are not available, automatic
differentiation can be used. Indeed, all our GP examples presented here involve an
interpolation scheme discussed in §5, rendering analytic derivatives intractable, and we
resort to using automatic differentiation.

MCMC sampling is advantageous because it can, in theory, fully characterise posterior
uncertainty in the covariance parameter fits. However, it is computationally costly and
may be not be necessary for concentrated unimodel posteriors. In these cases, MAP esti-
mation may be preferred due to its lower computational burden. While MAP estimates
are often sufficient for the kernel parameter fits, we typically still require information
about the posterior uncertainty in the ODE model parameters. Thus, we recommend the
following procedure for long ODE time series problems with non-stationary covariance
functions, which is specified in Algorithm 1. First, the joint MAP estimate of model pa-
rameters and covariance parameters is obtained using a gradient-based optimiser. Then,
MCMC sampling is used to obtain the posterior distribution of model parameters con-
ditional on the previously obtained MAP estimate of covariance parameters. For both
optimisation and MCMC sampling, random or uniform initialisation of the covariance
parameters will work for easier problems but will delay convergence on longer time series.
In long time series problems with intelligible noise patterns, we recommend a data-driven
initialisation of the covariance parameters in order to accelerate convergence of MCMC
or optimisation. To initialise L and σ in the non-stationary Laplacian covariance func-
tion, we use the procedure given by Algorithm 2. In practice, gradient-based optimisers
such as L-BFGS-B (Zhu et al., 1997) may settle at local maxima. Thus, we perform
optimisation with multiple restarts, with each restart taking a different initial value. A
set of variable yet plausible initial values for the restarts can be generated by rerunning
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Algorithm 2 multiple times with different sliding window widths.

Algorithm 1: MCMC estimates of ODE parameters using MAP estimates for
kernel parameters.

Input: A parametric model f(t; θ), a non-stationary covariance function
Cφ(ti, tj), and observed data {yi}Ni=1 at time points {ti}Ni=1; φ indicates
the full set of kernel parameters defining C.

Output: MCMC samples distributed according to the conditional posterior
p(θ|y, φMAP).

Initialise φ, for example using to Algorithm 2 for the Laplacian kernel;
Use gradient-based optimisation to find (θMAP, φMAP) = arg max p(θ, φ|y);
Calculate the fixed covariance matrix ΣMAP such that Σi,j = CφMAP

(ti, tj);
Use the covariance matrix defined above to form the likelihood
N (y|f(t; θ),ΣMAP);

Use MCMC to sample from the conditional posterior p(θ|y, φMAP)

Algorithm 2: Initialisation for non-stationary Laplacian kernel parameters.

Input: A parametric model f(t; θ) and observed data {yi}Ni=1 at time points
{ti}Ni=1 with spacing ∆t. A sliding window width for each kernel
parameter.

Output: A rough estimate of the parameters {σi}Ni=1 and {Li}Ni=1 of the
non-stationary Laplacian kernel which can be used to initialise an
optimisation algorithm or MCMC sampler.

Use optimisation to find the MAP estimate of model parameters assuming an
IID noise model, θMAP,IID;

Subtract f(t; θMAP,IID) from the observed data to obtain an estimate of the
noise terms εi;

At each time point ti, calculate the empirical variance vi and 1st order
autocorrelation ρi of the noise terms within a sliding window centred on that
time point;

Smooth both estimates using a Wiener filter (Wiener, 1950);
At each time point, ti, set σi =

√
vi and Li = −∆t/ log(|ρi|)

3.4. Gaussian process hyperparameters
For the GPs defined by eqs. (14), we used squared exponential kernels with constant
mean functions (Heinonen et al., 2016). With this assumption, there are six Gaussian
process hyperparameters for the model (for each of L and σ, a mean µ, noise level α,
and length scale β). Prior knowledge or a grid search can be used to set these values,
although existing work suggests only β has a substantial effect on posteriors in most
cases (Heinonen et al., 2016). We set µ = 0 and α = 1 (Heinonen et al., 2016), and
propose the following method to set β, which controls how the Gaussian process can
change over time. This behaviour is crucial to the adaptivity of the method. If the
scale, β, is too short, the GP will overfit local fluctuations; too large and it will fail to
account for real changes in the process over time.

To set the length scale, we used a heuristic based on the expected rate of change of
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the noise process. Given evenly spaced time points with spacing ∆t and a user-specified
number of time points Nc, we set β as the solution of

ζ = e−(Nc∆t)2/(2β2), (15)

for some small value ζ = 0.01. This equation imposes that the prior covariance between
two values of the Gaussian processNc time points apart is close to zero, thus summarising
the prior belief that the noise structure can change over that time scale. Good choices
for Nc will generally be problem specific. For non-uniform spacing, Nc∆t could replaced
by an appropriate time interval.

3.5. Example with synthetic data
In this example, we use the two-parameter logistic growth model:

dy

dt
= ry(1− y/K). (16)

We demonstrate the results of fitting the non-stationary kernel to synthetic data,
generated from a logistic growth model with r = 0.08, K = 50, and f(t = 0) = 2 with
multiplicative Gaussian noise:

yi = f(ti; θ) + f(ti; θ)
ηvi, (17)

where yi is an observed data point, f(t; θ) is the ODE model solution, and vi
IID∼ N (0, σ2).

We set η = 2 and σ = 0.0075. Eqs. (16)&(17) were used to generate eight replicate time
series, each with 250 time points. We considered parameter inference for each set of series
under three different noise processes: multiplicative (i.e. the true noise process), the non-
stationary Laplacian kernel, and IID Gaussian. In each case, Algorithm 1 was used to
generate posterior samples from r and K. MCMC sampling for model parameters was
performed using Pints inference software (Clerx et al., 2019) with three Markov chains
and a total of 20,000 iterations on each. The posterior was sufficiently simple here that a
non-gradient-based sampler – a form of adaptive covariance algorithm, called the Haario
Bardenet method (Haario et al., 2001; Johnstone et al., 2016) – was used opposed to
Hamiltonian Monte Carlo. On a desktop processor, each chain took approximately 20
minutes to run. The first half of each chain was discarded as warm-up, and convergence
was assessed using the Gelman R̂ statistic, requiring R̂ < 1.05 for all parameters (Gelman
et al., 2013). To set the GP hyperparameter β, we used eq. (15) with Nc = 200. The
results are shown in Figure 2. In panel (a), the data (from the first replicate) is shown
in the top panel, along with the fitted model trajectory. Below, the standard deviation
and lag 1 autocorrelation are shown based on the MAP estimates for each replicate
and indicate good correspondence with the ground truth. In panel (b), the posterior
distributions for the model parameters are shown. The growth parameter, r, was most
affected by incorrectly assuming IID Gaussian noise, where the IID noise model resulted
in estimates with overly inflated uncertainty. This is because model output is most
sensitive to r in the first half of the series, where the IID noise model overestimates the
noise level. In all cases, the GP method provided a higher fidelity estimate of uncertainty
than IID noise; in most cases the location of the posterior is also improved. Another
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Fig. 2: Non-stationary Laplacian kernel fits to logistic data. The top plot of
panel (a) shows an example logistic growth time series with multiplicative noise, with
250 time points. In the other two plots of (a) and in panel (b), results for model fits to
eight replicate datasets are shown. In the middle plot of panel (a), the true standard de-

viation
√
C(ti, ti) is shown, along with model estimates of it at the MAP estimates for L

and σ (one line per each replicate). In this plot, we also indicate the standard deviations
estimated by the IID assumption as horizontal dashed lines. In the bottom plot of panel
(a), the same is shown as in the middle plot, except with results for the lag 1 autocor-
relation, C(ti, ti+1)/(σ(ti)σ(ti+1)). Panel (b) shows MCMC estimates of the posterior
distributions for the logistic growth model parameters under three different assumptions
for the noise process; the boxes cover the central 50% posterior estimates, while the
whiskers cover the central 95% posterior estimates, and the dashed lines indicate the
true values of the parameters.
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example of the GPs fitted to synthetic data is given in Figure S2. In this example, the
true data generating process consists of discrete blocks of different noise models, and
the results show the ability of the non-stationary kernel method to find an appropriate
smooth approximation.

4. Flexible noise for ODEs using change points

In this section, we describe a second flexible noise process for learning covariance matrices
for time series noise. In §4.1, an overview of our “block covariance matrix” method is
provided along with a change point model. In §4.2, we use synthetic data from the
logistic model to illustrate how the model can be fitted.

4.1. Nonparametric change point models
Instead of assuming that kernel parameters vary smoothly and continuously over time,
we now introduce a model that divides the time domain into discrete sections; each with
a distinct noise model. A model of this type results in a block structure for the covariance
matrix. Assuming the time series is divided into M regimes indexed by m = 1, . . . ,M ,
and each regime m has a covariance kernel km, the covariance matrix takes the form,

Σ =


Σ(1) 0 . . . 0

0 Σ(2) . . . 0
...

...
. . .

...

0 0 . . . Σ(M)

 , (18)

where each block Σ(m) is a positive definite matrix, with elements given by Σ
(m)
ij = km(ti, tj).

The covariance matrix from eq. (18) is guaranteed to be positive definite because each
block is positive definite. Eq. (18) requires that the autocorrelation between consecutive
points at the boundary between two blocks is zero. When autocorrelation varies more
gradually, this may be a disadvantage, and could likely be better handled by the non-
stationary kernel method in §3. But, for more rapid changes in covariance, the block
method should outperform.

To infer the locations of block boundaries is a type of “change point” problem (see, for
example, Aminikhanghahi and Cook (2017)), which is a wide field with many methods
and fitting processes. We choose a nonparametric approach to change point detection,
which has the benefit that the number of boundaries need not be fixed beforehand. In
particular, we specify the “restricted product partition model” (PPM) induced by the
Pitman-Yor process as a prior on the partitions (Mart́ınez and Mena, 2014). The PPM
approach is convenient for learning model parameters, as the posterior over partitions
can be inferred jointly with the posterior over ODE model parameters.

To specify the change point model, we place a prior over the partitions which lie in
the class of set compositions of the index set [N ] = {1, 2, . . . , N}, i.e., C[N ]. This class
contains all partitions {S1, S2, . . . , SM} such that Sm = {sj + i : i = 1, 2, . . . nm}, where
s0 = 0, sj = n1 + n2 + · · ·+ nj , and nm is the number of indices in Sm (Mart́ınez and
Mena, 2014). As an illustrative example, consider the case where N = 3, in which C[3]
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contains the following elements:

{{1}, {2}, {3}}, {{1, 2}, {3}}, {{1}, {2, 3}}, {{1, 2, 3}}.

C[N ] contains all admissible assignments of the time points to consecutive blocks.
Let ρN indicate a random variable taking values in C[N ]. For a problem with N time

points and k regimes, the PPM prior on ρN with discount parameter s and strength
parameter φ is given by:

p(ρN |s, φ) =

N !

k!

∏k−1
i=1 (φ+ is)

(φ+ 1)N−1↑

k∏
j=1

(1− s)nj−1↑

nj !

 . (19)

In this equation, xn↑ denotes the rising factorial or Pochhammer function; i.e.,
xn↑ = (x)(x+ 1) . . . (x+ n− 1). Some visual analysis of the prior p(ρn) is presented in
Figure S3; φ serves as a location parameter controlling the number of blocks, while s is
a concentration parameter controlling the variance in this number.

We assume a parametric form for all block kernels km, such as the Laplacian kernel
given in eq. (8) (which takes two parameters). These parameters are constant within a
block, but vary from block to block. The appropriate priors for the kernel parameters
will depend on the form of the kernel. For the Laplacian kernel, we place diffuse normal
priors on the logarithms of the parameters:

logL ∼ N (−4, 4), log σ ∼ N (0, 4). (20)

MCMC inference for the posterior is possible using Metropolis-Hastings steps in a
split-merge-shuffle sampler, as used in Algorithm 2 of Mart́ınez and Mena (2014). Each
iteration of this approach consists of a series of proposals that may be accepted or
rejected: first, there is a proposal that affects the number of blocks; this can be either a
merge of two consecutive blocks or a split at some random point within an existing block;
second, a proposal that keeps the number of blocks the same is used – in this “shuffle”
proposal, the boundary between two blocks is randomly moved somewhere within their
limits.

In prior work on inference for PPM models (Mart́ınez and Mena, 2014), the MCMC
algorithm is restricted to the case where all within-block parameters can be integrated
out, allowing calculation of the marginal posterior probability p(ρN |y) ∝ p(y|ρN )p(ρN )
for any valid proposed partition ρN . In this work, we relax this assumption, so that
we can only calculate the likelihood given explicit values for both the partition and the
block parameters. This presents a challenge to inference, as evaluations of the marginal
likelihood are essential to calculate the acceptance ratio of the merge and split proposals.
In this work, we modify the split-merge-shuffle sampler to handle the non-conjugate case
using the ideas of the Sequentially-Allocated Merge-Split (SAMS) Sampler for Dirichlet
processes (Dahl, 2005). Briefly, when proposing a split, we simultaneously propose new
values for the block parameters in the newly split block using a random walk. When
proposing a merge, the current parameter values from the first of the two merged blocks
are selected for use in the proposal. At each MCMC iteration, an additional Metropolis-
Hastings step is performed to update the explicit block parameter values. The details
of our MCMC algorithm are given in §S4.
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A key benefit of a nonparametric approach for covariance matrix estimation is that
it can learn an appropriate number of blocks from data. This flexibility has a cost,
however – in theory, each individual time point could be assigned to its own block. To
avoid this outcome, informative priors on s and φ can be specified. For s, we specify the
prior: s ∼ beta(1, 1). For φ, we place a shifted gamma prior‡ with parameters (a, b, s).
We choose the hyperparameters a, b such that, at the prior mean of s, prior mass in
the number of blocks is heavily concentrated at one block. Appropriate values for a
and b may thus depend on the length of the time series and the desired strength of the
prior preference for one block; we achieve a moderately informative prior using a = 0.01
and b = 100. This specification represents a weak null belief that the noise process is
stationary, but allows the noise process flexibility to change if necessary.

4.2. Example with synthetic data

We tested the block noise process on synthetic data generated according to the logistic
model, eq. (16), with r = 0.08, K = 50, and f(t = 0) = 2. In addition, we contrived
a noise process with 5 regimes, each of 100 consecutive time points. The first, third
and fifth regimes had IID Gaussian noise with σ = 3, the second regime had AR(1)
noise with ρ = 0.85 and σ = 3, and the fourth regime had IID Gaussian noise with
σ = 30. A total of 20,000 MCMC iterations were performed using our version of the
split-merge-shuffle sampler (see §S4), with the first 10,000 discarded as warm up, and

convergence was assessed using the Gelman R̂ statistic, requiring R̂ < 1.05 for all model
parameters. Each MCMC iteration consisted of one split-merge-shuffle step for the blocks
as well as one adaptive covariance step for the model parameters. On this dataset, all
iterations took approximately 100 minutes to run on a desktop processor. In the first
panel of Figure 3 (a), we show the data and the posterior median of the learned model
trajectory, as well as the posterior median of two standard deviations of the inferred
noise process about the model trajectory. The next two panels compare the estimated
error standard deviation and lag 1 autocorrelation with their true values. This shows
that the change point flexible noise process readily captures the five different regimes
and learns their boundaries. In Figure 3 (b), we plot the posterior distributions for
the logistic growth parameters with three different assumptions for the noise process.
The noise process labelled “Correct” indicates an assumption of a multivariate normal
likelihood with a block covariance matrix as given in eq. (18), with the block locations
and sizes fixed to their correct values. However, in the “Correct” comparator method,
the kernel parameters within each fixed block are not known, and are inferred jointly
with the ODE model parameters. Meanwhile, the results from the nonparametric block
covariance method are labelled with “Block”. For both r and K, the IID noise model
results in inflated estimates of posterior variance, while both the block covariance method
and the true noise model recover precise posteriors.

‡If X − c ∼ gamma(a, b), then X ∼ shifted-gamma(a, b, c).
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Fig. 3: Block covariance kernel fits to logistic data. Panel (a) shows an example
logistic growth time series with 5 blocks of different noise forms and a total of 500
time points. The model fit ±2 standard deviations of the inferred noise process are
overlaid on the data points. In the middle and bottom plots of panel (a), the true values
of standard deviation and lag 1 autocorrelation are shown as dotted lines, while the
inferred posterior median standard deviation and central 90% posterior are shown as
a solid line and shaded region. In panel (b), results for model fits to eight replicate
datasets are shown. This panel shows MCMC estimates of the posterior distributions
for the logistic growth model parameters under three different assumptions for the noise
process; the boxes cover the central 50% posterior estimates, while the whiskers cover
the central 95% posterior estimates, and the dashed lines indicate the true values of the
parameters.
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5. Efficient computation for long time series

In real-life time series problems, we often encounter numbers of data points in the hun-
dreds or thousands. In these cases, the computational cost of the methods mentioned
above becomes a serious hindrance. In this section, we thus provide two computational
strategies which can significantly decrease the runtime, and enable scaling to long time
series.

The computational cost of the multivariate normal likelihood given in eq. (4) is
sensitive to the number of time series points, n: the covariance matrix, Σ, is n× n, and
the multivariate normal requires its inverse and determinant to be calculated. For highly
sampled time series data, n is large enough that these computations are impossible.

To scale to long time series, we take advantage of the relative sparsity of the covariance
matrix. Any reasonable kernel, including the kernels we study in this paper, will generate
matrices whose values are close to zero sufficiently far away from the diagonal. We
truncate the entries in our covariance matrix, setting all those below a small threshold
(10−9) to zero. This results in a sparse matrix whose inverse and determinant can be
computed using sparse Cholesky decomposition.

The non-stationary kernel for the GP method presents another scaling challenge as it
requires inferring the value of the various GPs at each time point. For the non-stationary
Laplacian kernel, this means that L(t) and σ(t) in eq. (14) are estimated for all t. For
long time series, the number of parameters to infer then becomes prohibitive. To reduce
this cost, we infer only the GP posterior on a sparser grid of time points. The GP
functions are then interpolated to populate the covariance matrix at the original time
points; here, we use linear interpolation but recognise that, if the GP value changes
rapidly, more nuanced schemes may be appropriate. By introducing the interpolation
step, the analytical calculation of the gradient of the multivariate normal likelihood
becomes intractable. Therefore, in order to use gradient-based optimisers or MCMC
samplers (such as L-BFGS-B and Hamiltonian Monte Carlo) (Zhu et al., 1997; Neal,
2011), we rely on automatic differentiation.

The specific speedup enabled by these two computational approximations will vary
greatly according to details of the problem at hand but, in our experience, can be quite
dramatic. With a time series of length 150, we found that learning the non-stationary
Laplacian kernel parameters at every fifth point and then interpolating resulted in a
speedup of approximately 500% at each MCMC iteration, and using sparse covariance
matrices resulted in a speedup of approximately 4100% for evaluation of the multivari-
ate normal likelihood. On a typical desktop computer, these approximations enable
reasonable runtimes for time series with lengths on the order of 10,000 points, as we
demonstrate in the following section.

6. Application to hERG channel kinetics

The preceding examples of the flexible noise processes used synthetic data; in this section,
we fit flexible noise processes to real data generated from experiments on the hERG
potassium ion channel. This problem is challenging because the noise is clearly not IID,
and, also because there may be misspecification of the underlying ODE model. In §6.1,
we provide a brief description of the hERG channel and a model used to investigate its
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behaviour and also describe experimental data generated for this system. In §6.2, we
show how a flexible noise process can capture non-IID noise trends leading to different
estimates of model parameters compared to those from an IID noise model.

The hERG channel time series are long (7700 time points, after 10× thinning), and
we expect that the variation in the magnitude and autocorrelation of their noise terms
can be captured using a continuously varying method. Thus, in this section we use the
non-stationary covariance kernel method from §3 along with those modifications given
in §5 to allow efficient computation.

6.1. Description of hERG problem
The human Ether-à-go-go-Related Gene (hERG) encodes the alpha subunit of the potas-
sium channel Kv11.1 that conducts the rapid delayed rectifier potassium current IKr.
This current is of great importance in cardiac electrophysiology and safety pharma-
cology; reduction of IKr by pharmaceutical compounds or mutations can induce fatal
disturbances in cardiac rhythm. Interest in this model generally centres on understand-
ing the current response of the hERG channel when a voltage stimuli V is applied. The
current can be described with a Hodgkin & Huxley-style structure model (Hodgkin and
Huxley, 1952) given by:

IKr = gKr · a · r · (V − EK), (21)

where gKr is the maximal conductance, and EK is the reversal potential (Nernst poten-
tial) for potassium ions which can be calculated directly from potassium concentrations
using the Nernst equation.

The kinetic terms of the model, a and r, are governed by:

da

dt
=
a∞ − a
τa

,
dr

dt
=
r∞ − r
τr

, (22)

a∞ =
k1

k1 + k2
, r∞ =

k4

k3 + k4
, (23)

τa =
1

k1 + k2
, τr =

1

k3 + k4
, (24)

where,

k1 = p1 exp(p2V ), k3 = p5 exp(p6V ), (25)

k2 = p3 exp(−p4V ), k4 = p7 exp(−p8V ). (26)

The model has 9 parameters θ = (gKr, p1, p2, . . . , p8) to be inferred, all of which are
positive. These parameters are the maximal conductance gKr [pS] and kinetic parameters
p1, p2, p3, · · · , p8 [s−1, V−1, s−1, · · · , V−1].

Experimental data of the current are taken from a freely available dataset (Lei et al.,
2019a; 2019b), where the voltage stimuli V were designed for parametrising the model.

The logarithm-transformation was applied to all model parameters θ, such that the
transformed parameters φ = log(θ) are unconstrained. To account for the impact of
this non-linear transformation on the posterior, a Jacobian transformation was applied.
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Priors for φ were selected using existing literature results (Lei et al., 2019a; 2019b), and,
for each element of φ, a weakly informative prior Gaussian distribution was used (see
Table S1 for the prior hyperparameters).

6.2. Results
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Fig. 4: Posterior distributions for hERG model parameters. This figure compares
the posterior distributions resultant from the IID Gaussian noise assumption (“IID”) and
non-stationary Laplacian kernel (“Laplacian”) for the nine hERG model parameters for
six cells. For each parameter, the central 95% range of the posterior is shown for each
noise model as a bar, with the IID posterior shown on the horizontal axis and the non-
stationary posterior shown on the vertical axis. Within each plot, a diagonal dashed line
is drawn along y = x.

For six different cells, the model parameter posteriors were obtained via MCMC
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using the IID noise model and the non-stationary Laplacian kernel flexible noise model.
To obtain posterior samples, the simulated tempering population MCMC algorithm was
used (Jasra et al., 2007), with convergence assessed using the Gelman R̂ statistic (Gelman
et al., 2013), and the first half of each chain discarded as warm up. For the non-stationary
Laplacian kernel, we used Algorithm 1 for inference and Algorithm 2 for initialisation.
The fits for each of six cells are shown with the time series data in Figure S4.

Figure 4 shows the central 95% posterior distribution ranges for all nine model param-
eters, assuming either IID Gaussian noise (horizontal axis) or the non-stationary noise
process (vertical axis). There were significant differences in the parameter estimates for
almost all parameters, with much of probability mass not overlapping the IID=Laplacian
line. Additionally, the more sophisticated noise model resulted in substantially higher
posterior variance for several model parameters, notably including gKr, p2 and p4. Cell
A04 is an outlier: this is likely because this cell has a region of drastic misspecification
in much of the time series, from t = 6 to t = 10. While the model fits for all six cells in-
dicate short regions of misspecification, which is particularly apparent after the drops in
current around t = 2 and t = 14, cell A04 (and to a lesser extent, A07) suffer from more
extensive misspecification. The data and inferred fits for cell A04 are shown in Figure 5.
The non-stationary noise model detects the central misspecified region by assigning high
variance and autocorrelation in the middle of the time series. In the time series for cells
A04 and A07, the poor fit between model and data may be largely explained by the
fact that our model in this study (§6.1) fails to account for experimental artefacts in the
voltage clamp experiment, such as leakage current—these artefacts may explain much
of the cell-to-cell variability observed in these experiments (Lei et al., 2020). Thus, the
high levels of standard deviation and autocorrelation detected in these time series sug-
gest that a more detailed model of the experiment is necessary in order to understand
these cells and correct the regions of obvious poor fit.

7. Discussion

When performing Bayesian inference for the parameters of time series models, the as-
sumption made for the noise process may drastically alter the posterior estimates of
parameter uncertainty. The flexible noise models described in this paper have the abil-
ity to learn noise processes from the data, including complex, non-stationary noise pro-
cesses. The utility of these methods has been demonstrated in constructed synthetic
data examples.

In applied circumstances, noise terms which exhibit autocorrelation and time-varying
magnitude often indicate model misspecification. This is what we observe in the hERG
time series problem, in which the best fit model trajectory cannot fully express the
signal that is clear in the data. In these cases, our non-stationary covariance noise
process is able to pick out the regions of poor fit and model the spikes in magnitude and
autocorrelation present at those time periods, with corresponding changes apparent in
the model parameter posteriors. Future work to better handle misspecification in time
series problems such as the hERG channel may benefit from the ability, offered by the
methods in this paper, to avoid the often incorrect assumption of IID Gaussian noise.
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Fig. 5: Non-stationary Laplacian kernel noise model fit to hERG cell A04.
This figure shows the data and model fit (top panel), and the MAP estimate standard
deviation and lag 1 autocorrelation over time (second and third panels) inferred by the
non-stationary Laplacian kernel noise model for cell A04.
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S1. Stationary AR(1) noise with Laplacian kernel

Accurate inference for stationary non-IID noise can be achieved using the standard
Laplacian kernel,

C(ti, tj) = σ2e−|ti−tj |/L. (27)

Here, we show the results of the method applied to a synthetic logistic growth time series
with autoregressive order 1 (AR(1)) error terms. These results are shown in Figure S1.
Panel (a) shows a synthetic noisy time series. The underlying model trajectory, labelled
“Noise-free trajectory”, is calculated from a logistic growth model,

dy

dt
= ry(1− y/K). (28)

The AR(1) time series shows persistence in the error terms: the error term at any given
time points depends both on a random fluctuation as well as the previous observation.
Specifically, we model each error term εi = yi − f(ti; θ) according to:

εi = ρεi−1 + vi, (29)

where vi is Gaussian white noise, vi ∼ N(0, σ
√

1− ρ2). In these simulations, we used
ρ = 0.8 and σ = 3. Ten replicates of the time series with AR(1) noise were generated.
For each time series, Bayesian inference for the parameters r and K was performed
for each of three noise processes we consider: IID Gaussian with unknown variance
(incorrectly specified), AR(1) with two unknown parameters (correctly specified), and
the multivariate Gaussian likelihood with Laplacian kernel covariance. MCMC sampling
was performed using three chains of the Haario Bardenet adaptive covariance algorithm,
with a total of 20000 iterations in each chain (Haario et al., 2001; Johnstone et al., 2016).
The first half of each chain was discarded as warm-up, and convergence was assessed
using the Gelman R̂ statistic (Gelman et al., 2013). In Panel (b), the results of posterior
inference for r and K are shown under the three noise processes, across 10 replicates.
In each replicate, the bars indicate the central 95% of the posterior, while the green
lines indicate the true values of the posterior. In each replicate, the first posterior with
the correctly specified AR(1) noise process shows relatively high posterior uncertainty.
The general multivariate normal noise process with Laplacian kernel reproduces the high
level of posterior uncertainty in model parameters. By contrast, incorrectly specified IID
assumption underestimates posterior uncertainty.

S2. Non-stationary Laplacian kernel on blocked synthetic data

This section shows an example of the GP non-stationary kernel method being applied to
a synthetic time series with very sharp changes in the true noise parameters. The noise
process had 5 regimes, and was used with a logistic growth ODE model. The first, third
and fifth regimes had IID Gaussian noise with σ = 3, the second regime had AR(1) noise
with ρ = 0.85 and σ = 3, and the fourth regime had IID Gaussian noise with σ = 30.
We found the MAP estimates of the non-stationary Laplacian kernel parameters, using
Algorithm 2 for initialisation. In Figure S2, the results are shown. The top panel shows
one replicate of the data and the MAP estimate of the model trajectory. In the bottom
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Fig. S1: Capturing AR(1) noise using a stationary Laplacian kernel. Panel (a)
shows a logistic growth time series with AR(1) noise. Ten replicates of the AR(1) time
series were generated. Panel (b) shows the posterior distributions for logistic growth
model parameters under three different assumptions for the noise process for each repli-
cate. The boxes cover the central 50% posterior estimates, while the whiskers cover the
central 95% posterior estimates. The dashed lines indicate true parameter values.
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Fig. S2: Non-stationary kernel method fit to blocked noise data. This figure
shows how the Gaussian processes in the non-stationary Laplacian kernel handle a noise
process with blocks of different types of noise. The top plot shows a logistic growth time
series with 5 blocks of different noise forms. In the middle and bottom plots, the true
values of standard deviation and lag 1 autocorrelation are shown as dotted lines, while
the inferred MAP estimates for standard deviation and lag 1 autocorrelation are shown
in solid lines.

two panels, the inferred standard deviation and lag 1 autocorrelation are shown for
three replicates. The GPs are unable to learn the sharp corners in the ground truth for
standard deviation and autocorrelation, but they do reach a smooth approximation of
the ground truth.

S3. Blocked covariance prior distribution

In this section, we present some visualisations of the PPM prior used in the block
covariance method. The prior over partitions, given by

p(ρN ) =

N !

k!

∏k−1
i=1 (φ+ is)

(φ+ 1)N−1↑

k∏
j=1

(1− s)nj−1↑

nj !

 , (30)
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Fig. S3: Marginal prior over number of blocks. This figure shows slices of the
marginal prior over the number of blocks used (Mart́ınez and Mena, 2014). In the top
panel, σ is fixed to 0.5. In the bottom panel, the mean number of blocks is fixed to 20.

does not admit direct interpretation or visualisation, but the marginal prior distribution
over the number of blocks offers insight into (30) and its hyperparameters (Mart́ınez and
Mena, 2014). Some slices of the marginal distribution over the number of blocks used
are shown in Figure S3. In all cases, the total number of time points N is fixed to 60.
In the top panel, s is fixed to 0.5 and the prior is illustrated for three values of φ. This
shows how φ works as a location parameter, shifting the prior mass to higher numbers
of blocks as it increases. In the bottom panel, the mean number of blocks is fixed to 20
and the prior is shown for three values of s, which clearly serves as a shape parameter
controlling the spread of the prior distribution.
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S4. MCMC algorithm for block covariance

This section describes our split-merge-shuffle MCMC algorithm for inferring blocked
covariance matrices. The algorithm closely follows the split-merge-shuffle algorithm for
the conjugate case (Mart́ınez and Mena, 2014), modified for non-conjugacy using ideas
from the SAMS sampler (Dahl, 2005). We assume as input a parametric model f(t; θ), a
positive definite kernel Cψj

, observed data {yi}Ni=1 at time points {ti}Ni=1, partition prior
hyperparameters s and φ, with ψj indicating the full set of kernel parameters defining C
in the jth block. Each data point is assigned to a block using indicator variables {zi}Ni=1.
The steps for the sampler are provided in Algorithm 3.

To calculate αsplit, the acceptance probability for a proposed split, we must first
propose a new value for ψ in the new block. Following Dahl (2005), we propose ψsplit

according to a random walk, using a Gaussian proposal centred on the current value with
a fixed variance. Letting ρ and ρ∗ indicate the original and proposed split partitions, and
ψ and ψ∗ the original and proposed vectors of block kernel parameters, the acceptance
ratio can then be calculated according to:

αsplit = min

(
1,
p(ρ∗, ψ∗|y)

p(ρ, ψ|y)

q(ρ, ψ|ρ∗, ψ∗)
q(ρ∗, ψ∗|ρ, ψ)

)
, (31)

where p(ρ, ψ|y) denotes the posterior density evaluated at the partition ρ and block
kernel parameters ψ, while q(ρ, ψ|ρ∗ψ∗) is the probability of proposing ρ and ψ from ρ∗

and ψ∗. The basic forward and reverse proposal probabilities for the split are obtained
in Mart́ınez and Mena (2014). Here, the forward probability must be multiplied by the
proposal density used to obtain ψsplit. αmerge indicates the acceptance probability for a
proposed merge. The same eq. (31) applies, while in this case the reverse probability
must be multiplied by the proposal density for ψsplit. The shuffle step is simpler as
the dimension remains unchanged; the proposal probabilities for shuffling are taken
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from Mart́ınez and Mena (2014).

Algorithm 3: MCMC sampler for block covariance

Input: A parametric model f(t; θ), a positive definite kernel function Cψj , observed
data {yi}Ni=1 at time points {ti}Ni=1. Initial values for the following parameters:
θ, assignments {zi}Ni=1 of each time point to blocks, ψj for each initial block j,
and partition prior hyperparameters s and φ. Desired number of MCMC
iterations NMCMC.

Output: MCMC samples for θ, z, s, φ, and ψ.
K ← initial number of blocks;
for j = 1 . . .K do

nj ←
∑N
i=1 1(zi = j); // Count number of points in each block

end
for m = 1 . . . NMCMC do

Update θ via one adaptive covariance MCMC step;
Update s and φ via standard MH steps;
for j = 1 . . .K do

Update ψj via standard MH steps;
end
Draw u from uniform(0, 1);
if K = 1 or u < 0.25 then

z, ψ,K ← split(z, ψ,K, n); // Run the split routine (Alg. 4)

else
z, ψ,K ← merge(z, ψ,K, n); // Run the merge routine (Alg. 5)

end
for j = 1 . . .K do

nj ←
∑N
i=1 1(zi = j); // Recount number of points in each block

end
z ← shuffle(z,K, n); // Run the shuffle routine (Alg. 6)

end

Algorithm 4: Split proposal step

Input: Assignments z, Kernel block parameters ψ, number of blocks K, number
of points in each block n.

Output: Updated assignments z, block parameters ψ and number of blocks K
after one Metropolis-Hastings split step.

Function split(z, ψ, K, n):
Randomly select a block j from {j : 1 ≤ j ≤ K,nj > 1};
Randomly select an index l from {1, . . . , nj − 1};
Draw u′ from uniform(0, 1);
if u′ < αsplit then

for i = 1 . . . N do

if i > l +
∑j−1

j′=1 nj′ then

zi ← zi + 1;

ψ ← (ψ1, . . . , ψj , ψsplit, ψj+1, . . . , ψK);
K ← K + 1;

return z, ψ, K;

Algorithm 5: Merge proposal step

Input: Assignments z, kernel block parameters ψ, number of blocks K, number
of points in each block n.

Output: Updated assignments z, block parameters ψ and number of blocks K
after one Metropolis-Hastings merge step.

Function merge(z, ψ, K, n):
Randomly select a block j from {j : 1 ≤ j ≤ K − 1};
Draw u′ from uniform(0, 1);
if u′ < αmerge then

for i = 1 . . . N do

if i >
∑j

j′=1 nj′ then

zi ← zi − 1;

ψ ← (ψ1, . . . , ψj , ψj+2, . . . , ψK);
K ← K − 1;

return z, ψ, K;

Algorithm 6: Shuffle proposal step

Input: Assignments z, number of blocks K, number of points in each block n.
Output: Updated assignments z after one Metropolis-Hastings shuffle step.
Function shuffle(z, K, n):

Randomly select a block j from {j : 1 ≤ j ≤ K − 1};
Randomly select an index l from {1, . . . , nj + nj+1 − 1};
Draw u′ from uniform(0, 1);
if u′ < αshuffle then

for i = 1 . . . N do

if
∑j−1

j′=1 nj′ < i ≤ l +
∑j−1

j′=1 nj′ then

zi ← j;

if l +
∑j−1

j′=1 nj′ < i ≤∑j+1
j′=1 nj′ then

zi ← j + 1;

return z;
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S5. hERG Hodgkin-Huxley model parameter priors

In this section, we list the priors used for the 9 log-transformed model parameters in the
hERG model introduced in §6.1.

Parameter Prior
gKr N(10.5, 1.0)
p1 N (−2.5, 3.0)
p2 N (4.5, 1.0)
p3 N (−3.5, 1.5)
p4 N (4.0, 0.5)
p5 N (4.5, 0.5)
p6 N (3.0, 1.5)
p7 N (2.0, 0.5)
p8 N (3.5, 0.5)

Table S1: hERG model prior parameters. This table contains the prior distributions
used for each parameter in the hERG model. For each parameter, the prior is a normal
distribution with the mean and standard deviation given in the table.

S6. hERG data and model fits

This section contains the time series data and model fit for six hERG cells. The main
features of the Gaussian process fits are two large spikes in standard deviation appearing
around times t = 2 and t = 14.5. While there is some variation from cell to cell, these
spikes correspond to regions of the time series with rapid drops in current. Autocorre-
lation is fairly high throughout the time series, with wide fluctuations. Cells A04 and
A07 exhibit another peak in standard deviation and autocorrelation around t = 8; this
corresponds to a region of obvious discrepancy between the model and the data.
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(b) A04
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(c) A06
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(d) A07
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(e) A09
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Fig. S4: Non-stationary Laplacian kernel noise models fit to hERG data. This
figure shows the data and model fit (top panel), and the MAP estimate standard de-
viation and lag 1 autocorrelation over time (second and third panels) inferred by the
non-stationary Laplacian kernel noise model for each of six cells.
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