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Abstract

The goal of systems biology is to provide a predictive and quantitative understanding of complex

biological systems and their experimental data using mathematical and computational models.

Mathematical modelling and computational simulation has been a crucial tool for basic research in

cardiac electrophysiology for decades, and has provided remarkable insights into many physiological

mechanisms. More recently these quantitative cardiac models have begun to transition into safety-

critical clinical and pharmaceutical development applications. Using cardiac mathematical models

in such applications requires high levels of credibility as well as an accurate quantification of the

uncertainty in the model predictions. In this thesis, we develop a suite of Bayesian inference and

uncertainty quantification techniques and software tools to study cardiac cellular electrophysiology.

We then design and perform high-throughput experiments to construct and validate cell-specific

mathematical models for human Ether-à-go-go-Related Gene (hERG) channel dynamics, and to

study its temperature dependence, which is important for cardiac safety pharmacology and cardiac

action potential models. Using the Bayesian statistical framework together with the high-throughput

measurements allows us to quantify the uncertainty and variability of the model parameters. We

also model and analyse how experimental artefacts contribute to the observed variability of these

recordings, allowing us to separate the effects of these artefacts from physiological behaviour. A

similar approach for uncertainty characterisation and experimental design will have to be adapted for

other ion currents to create better predictive models, as accurate ion channel models are essential for

constructing trustworthy cardiac action potential models.
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Chapter 1

Introduction

The circulatory system transports blood to distribute essential substances, such as oxygen and

nutrients, to tissues and to remove metabolic byproducts, for example carbon dioxide. The system is

powered by a muscular organ that pumps blood around the body — the heart. Its function is critical

to the health of the body.

The goal of systems biology is to integrate complex experimental data into mathematical and

computational models that provide a predictive and quantitative understanding of living systems.

The mathematical modelling of the electrophysiology of nerve and cardiac cells is one of the most

advanced and mature areas of systems biology. These cardiac models have contributed enormously

to the understanding of heart function, disease, and the origin of heart rhythm disturbances (Noble,

2008, 2011; Fink et al., 2011).

Pharmaceutical compounds can sometimes induce dangerous (side-)effects to the muscle cells in the

heart, causing disturbances in cardiac rhythm. Therefore pharmaceutical companies and regulatory

authorities prioritise screening for any potential side-effects the drug might induce in patients before

it is taken by those patients — leading to the need for cardiac safety testing in drug development.

International pharmaceutical regulatory authorities including the U.S. Food and Drug Administration

(FDA) are leading the Comprehensive in vitro Proarrhythmia Assay (CiPA), a process of introducing

new guidelines to replace a human clinical trial (the Thorough QT Study) to study the proarrhythmic

risk of all new drugs. The new approach will involve extensive use of in silico (mathematical) models

of human cardiomyocytes calibrated to in vitro ion channel screening data, and their predictions will

then be compared experimentally using human induced pluripotent stem cell-derived cardiomyocytes

(hiPSC-CMs), together with a more lightweight electrocardiogram (ECG) evaluation in early clinical

trials. However, there are issues that need to be addressed for the new guidelines before they can be

brought into practice. For example, hiPSC-CMs provide a proxy for human adult cardiomyocytes,

but they are not the same, so the hiPSC-CM experiments require interpretation and translation.

Multiple research questions arise from the proposed pharmaceutical safety guidelines. HiPSC-CM

cell lines are developed from a donor with a particular genetic background, using a specific set of

protocols from differentiation to maturation; how important are the differences between hiPSC-CM
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Introduction

cell lines, as well as cell-to-cell variability of ion current characteristics within a single line, for

our understanding of cell electrophysiology and prediction of drug effects? What experimental

approaches are best at characterising drug effects in ion channel screening experiments? Finally,

the human cardiomyocyte model needs accurate ion channel models for predictions; how can we

construct trustworthy ion channel models and assess how trustworthy they are?

The overall aim of this thesis is to establish and test a methodology to develop cell-specific mathemat-

ical electrophysiology models that in turn addresses the aforementioned scientific questions. Since in

vitro ion channel and hiPSC-CM experiments form the backbone of the new guidelines introduced

by CiPA, understanding experimental variability is crucial to such safety-critical decision-making

processes. A set of robust and ready-to-apply methodologies for building cell-specific models will

assist in the interpretation of these experiments. This work is not limited to drug safety testing, it can

also be used for, for example, personalised medicine, disease modelling and regenerative medicine.

Moreover, the techniques we develop are not limited to cardiac electrophysiology, they are broadly

applicable to communities interested in general ion channel electrophysiology.

Within this broader problem statement, six different topics are addressed. We first benchmark the

performance of tailoring hiPSC-CM cell-line specific models using a method based on conven-

tional/traditional voltage-clamp protocols, and find that there is room for improvement. We then

design and develop a suite of Bayesian inference and uncertainty quantification techniques and

software tools to study ion channel electrophysiology. Instead of using the conventional way of char-

acterising the ion channel models within a cardiomyocyte model, we perform experimental design

that allows us to develop ‘information-rich’ protocols to obtain rapid, high-quality, high-throughput

experiments that allow us to construct and to validate cell-specific models. We focus on the ionic

current IKr, which is of great importance in cardiac electrophysiology and safety pharmacology. We

then extend the approach to study the temperature dependence of IKr kinetics. Next, we investigate

the sources of variability and uncertainty in those experiments, and pin down which uncertainties are

relevant for physiological predictions, and which variabilities are likely due to experimental errors.

Finally, we apply optimal experimental design to hiPSC-CMs and test methodologies for building

cell-specific models. A schematic of the work presented in the main chapters is shown in Figure 1.1.

1.1 Thesis Outline
The next chapter, Chapter 2, introduces the necessary background information for the rest of the

thesis. It explains the basic biological/physiological, experimental, mathematical, statistical, and

pharmacological concepts that this thesis concerns.

Chapter 3 presents an attempt to tailor hiPSC-CM cell-line specific models with a method using

conventional voltage-clamp protocols whilst assuming ideal model kinetics. Although using limited

data and a relatively simple approach, we show that tailoring an hiPSC-CM model to a specific cell

line leads to improved predictions of baseline behaviour and response to drugs. This chapter acts

as a benchmark for the performance of hiPSC-CM cell-line specific models using the conventional

2
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Figure 1.1: A schematic of the work presented in the thesis chapters. In Chapter 3 we tailor cell-line specific
models for hiPSC-CMs using current kinetics models from the literature, suggesting the current kinetics models
need to be improved. In Chapters 4–6 we then look at methods to construct better current kinetics models.
Chapter 4 presents a method to rapidly characterise kinetics of the hERG channel using a high-throughput
patch-clamp system, and studies the variability between experiments. In Chapter 5 we study the temperature
dependence of hERG kinetics. Chapter 6 investigates the sources of experimental artefacts that may cause the
observed variability of hERG kinetics. Finally, in Chapter 7 we revisit tailoring action potential models using
optimal experimental design techniques to design voltage-clamp protocols while incorporating lessons learned
in the previous chapters.

methods and assumptions. More importantly, it reveals the limitations of the conventional methods,

which leads us to explore improvements in the following chapters.

In Chapter 4 we present a method that we have developed for high-throughput rapid characterisation

of kinetics of the human Ether-à-go-go-Related Gene (hERG) channel, which is one of the most

important ion channels in cardiomyocytes and underpins IKr. Using our novel method allows us

to fit mathematical models to results of over 100 single-cell patch-clamp measurements collected

simultaneously on an automated voltage-clamp platform. The automated patch-clamp data are used

to parameterise a mathematical ion channel model fully, allowing automated and rapid development

of mathematical models from quick, cheap, and reliable experiments. The method also allows ample

data for independent validation of the models and enables us to study experimental variability and

its origins in Chapter 6. We then apply our method to study the temperature dependence of hERG

kinetics in the next chapter; it can also be used to study different modulating factors such as mutations

or the action of pharmaceuticals, and could be adapted to study many other currents.

It is well-known that ion channel currents are highly sensitive to temperature changes. Yet, because

many experiments are performed more easily at room temperature, it is common to extrapolate

findings to physiological temperatures using Q10 coefficients or Eyring rate theory. Chapter 5

describes the use of short, information-rich protocols developed in the previous chapter to identify

how kinetic parameters change with temperature. We show that the commonly used Q10 and Eyring

formulations are incapable of describing the parameters’ temperature dependence for our model. A

more generalised Eyring relationship works well, but remeasuring kinetics by refitting a model is

optimal. The findings have implications for the accuracy of Q10 coefficients in electrophysiology, and
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care is needed to avoid misleading extrapolations using Q10 coefficients in scientific and industrial

pharmaceutical applications, such as those described in Chapter 3.

Chapter 6 investigates the source of the observed experiment-to-experiment variability in Chapter 4.

We derive a mathematical model that describes not just ion current dynamics, but the entire voltage-

clamp experiment. The experimental artefact components of the model include: series resistance,

membrane and pipette capacitances, voltage offsets, leak current, and imperfect compensations made

by the amplifier for these phenomena. In this model, variability in the observations can be explained

by either cell properties, measurement artefacts, or both. Remarkably, by assuming that variability

arises exclusively from measurement artefacts, it is possible to explain a larger amount of the observed

variability than when assuming cell-specific ion current kinetics; the first assumption also leads to a

smaller number of model parameters. The result suggests that most of the observed variability in

patch-clamp data measured under the same conditions is caused by experimental artefacts, and hence

can be compensated for in post-processing by using our model for the patch-clamp experiment.

In Chapter 7 we revisit whole-cell modelling and hiPSC-CM models. We apply an approach similar

to that of the previous chapters for studying ion channel kinetics, optimal experimental design for

action potential models. We focus on developing a voltage-clamp experimental protocol that allows

us to identify the maximum conductance values for each current type. We further consider the

potential real-world challenges that one would encounter when applying to experimental recordings:

first, in exploring the potential uncertainty of the ion channel kinetics, we examine the robustness of

the designs using multiple existing ion channel kinetics models; secondly, we check whether it would

help to consider using specific blockers to isolate each type of current, when there is discrepancy in

model kinetics; finally, we consider the experimental variability that we studied in Chapter 6, and

how it would affect the inferred conductance values.

In Chapter 8, we discuss how each chapter contributes to and advances the state of the art in cardiac

electrophysiology. We then conclude the thesis, and finish with suggestions for future research and

remaining open challenges.
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Background

I co-authored the following publications discussed in this chapter:

Clerx, M., Robinson, M., Lambert, B., Lei, C. L., Ghosh, S., Mirams, G. R., and Gavaghan, D. J.
(2019b). Probabilistic Inference on Noisy Time Series (PINTS). Journal of Open Research Software,
7(1):23.

Contributions: I co-developed and maintained the open source Python package, PINTS.

Whittaker, D. G., Clerx, M., Lei, C. L., Christini, D. J., and Mirams, G. R. (2020). Calibration
of ionic and cellular cardiac electrophysiology models. Wiley Interdisciplinary Reviews: Systems
Biology and Medicine, 12(4):e1482.

Contributions: I wrote code for some examples in this review, performed data analysis, generated

plots and drafted part of this review.

Overview:

This chapter provides some of the basic biological/physiological, mathematical, experimental, pharmacological,

and statistical concepts and background relevant to this thesis; some of the more in-depth discussion and

references to more detailed work are included in the later chapters. The human heart is critical to the health of

the body, its contraction is coordinated by (bio-)electrical signals known as action potentials. We first look

at cellular electrophysiology: how these electrical signals are caused by the movement of ions, i.e. electrical

currents, going in and out of heart muscle cells. We then review human induced pluripotent stem cell-derived

cardiomyocytes (hiPSC-CMs) which provide a new proxy to study the complex behaviour of human heart

muscle cells, and their limitations. These hiPSC-CMs are proposed to be used as part of future drug testing

in the Comprehensive in vitro Proarrhythmia Assay (CiPA) led by the U.S. Food and Drug Administration

(FDA). Next we discuss the mathematical models describing the dynamics of these action potentials and

currents. We then describe the modern experimental techniques for studying cellular electrophysiology and

how these models are constructed. Finally we discuss how the accuracy and robustness of the models for such

safety-critical decisions can be critically assessed.
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2.1 Electrophysiology of the Human Heart
The human heart consists of two pumps, left and right, and each has an atrium and a ventricle.

The two atria are smaller, with thinner walls than the ventricles. The right side of the heart pumps

deoxygenated blood towards the lungs and oxygenated blood back to the left side of the heart. The

left side of the heart then pumps the oxygenated blood around the rest of the body. The latter process

is more physically-demanding and accordingly, the left ventricle has a much thicker wall than the

right. A schematic of the basic anatomy of the human heart is shown in Figure 2.1 (left).

The walls of these pumps comprise layers of muscle cells, termed cardiomyocytes, and other cells

with specialised functions. Cardiomyocytes, like neurons, are electrically excitable, and can be

stimulated to propagate electric signals. These electric signals coordinate the pumping of the heart —

a well-timed sequence of contractions of around five billion cardiomyocytes (Olivetti et al., 1995).

The contraction of the cardiomyocytes is controlled by an electric signal known as the action potential.

An action potential is the rapid rise and fall of the transmembrane potential, also called the membrane

potential or membrane voltage, of a cell. These changes in the membrane potential trigger an influx

of calcium ions into the cell (leading to a further release of calcium ions from stores within the cell);

the increase of intracellular calcium ion concentration enables the formation of cross bridges between

myosin and actin, which gives rise to contraction of cardiomyocytes (Bers, 2002).

In addition, the heart contains smaller numbers of cells with specialised electrical functions that help

RA
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P T
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SA node
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Time

Figure 2.1: An illustration of the basic anatomy of, and action potentials across, the human heart. (Left)
Shows the four chambers of the heart and the arrows indicate the direction of blood flow, where deoxygenated
blood enters the right atrium (RA) and through the right ventricle (RV) to the lungs. Oxygenated blood from
the lungs enters the left atrium (LA) and then the left ventricle (LV), which is pumped to the rest of the body.
(Right) Shows the action potentials of different phenotypes of cardiomyocyte in the heart. These different
action potentials contribute to the characteristic shape of the electrocardiogram (ECG), shown in red. Adapted
from Hume and Grant (2015).
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coordinating the contraction. The cells of the sinoatrial node exhibit spontaneous excitation, i.e.

they spontaneously generate action potentials, setting the pace for the rest of the heart in healthy

conditions. The electrical waves propagate from the sinoatrial node, located at the top of the right

atrium, to the left and right atria triggering contraction of the atrial muscle cells. The atria are

electrically shielded from the ventricles; the activation of the ventricles occurs via the cells of the

atrioventricular node. The signals from the atrioventricular node travel down conducting Purkinje

fibres in the septum (the muscle wall which separates the left and right ventricles) towards to the

apex of the heart, which then spread over the ventricular walls causing the ventricles to contract. This

completes one cycle of the pumping action of the heart.

2.1.1 Cellular electrophysiology and the action potential

Cardiomyocytes, like all cells, are surrounded by a membrane composed of a lipid bilayer. This

membrane works as an electrical insulator: a barrier to the movement of ions, such as sodium, calcium,

and potassium. Transmembrane proteins are embedded in the membrane of the cardiomyocytes,

some of which are ion pumps, ion exchangers and ion channels. The ion pumps actively push ions

across the membrane and maintain electrochemical gradients across the membrane, by breaking

down ATP (adenosine triphosphate) into ADP (adenosine diphosphate) to obtain the required energy;

the ion exchangers utilise the electrochemical gradient to move ions across against their gradient,

whilst simultaneously moving a second type of ion along its gradient; and the ion channels facilitate

passive diffusion and allow multiple or specific ion types to move across the membrane. The main

differences between ion pumps, ion exchangers, and ion channels are reviewed by Molleman (2003).

The ion channels of interest in cardiomyocytes are mostly voltage-sensitive, and are known as

voltage-gated ion channels. The probability of these ion channels being open, i.e. conducting current,

changes as a response to the membrane voltage (Hille, 2001). There also exist other ion channels

which are ligand-gated, light-gated, or controlled by second messengers.

To demonstrate the general idea of the formation of an action potential, we take cells from the outer

layer (epicardial) of the ventricles as an example. The formation of the action potential in other types

of cardiomyocytes varies slightly, see Figure 2.1 (right) which shows the differences in shape.

Under an electrical stimulus, for example an influx of positively-charged ions from the neighbouring

cells which raises the intracellular potential, voltage-gated sodium ion channels open and sodium

ions flow into the cell down their concentration gradient. This is known as the fast sodium current INa,

which rapidly increases the cell membrane voltage (depolarisation), sometimes also called “Phase

0”1 of the action potential (Grant, 2009).

Phase 1. A short period of repolarisation. The rapid inactivation of the inward sodium current INa,

together with the activation of the transient outward potassium current Ito, causes a small rapid

drop of the membrane voltage.

1Although the processes and dynamics that result in the action potential are continuous, by textbook convention the
action potential is described as having separate “phases”.
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Figure 2.2: The action potential and the ionic currents simulated with the model by O’Hara et al. (2011).
(Left) The action potential (black line) represents the transmembrane voltage dynamics of an epicardial (outer
layer of) ventricular cell (top panel); shown along with the calcium transient (red line) which controls the
contraction of the cell (bottom panel). (Right) Shows the major currents that contribute to the action potential.
Each current exhibits distinctive dynamics and contributes at different stages of the action potential. Currents
conducted by ion channels are shown in blue, exchangers in green, and pumps in purple. Background (or leak)
currents are shown in grey.

Phase 2. A plateau phase. The entry of calcium ions, L-type calcium current ICaL, approximately

balances the outward flow of potassium ions resulting in a plateau in the action potential.

This also induces a release of calcium ions from the sarcoplasmic reticulum (SR), known as

calcium-induced calcium release (CICR), which triggers the contraction of the cardiomyocyte

(Bers, 2002).

Phase 3. A final repolarisation. The efflux of various potassium currents, such as the rapid delayed

rectifier current IKr, the slow delayed rectifier current IKs and the inward rectifier current IK1

(Nerbonne and Kass, 2005), together with the reduction of ICaL, bring the membrane voltage

slowly back to the resting potential.

Phase 4. An overall efflux of sodium and influx of potassium occur. This is needed to maintain

homeostasis by recovering the cell to its initial state, in preparation for the next action potential.

The whole process of action potential formation is illustrated using a recent mathematical model

simulation in Figure 2.2.

The transmembrane voltage dynamics depend on the phenotype of the cell, see Figure 2.1 (right).

For example, atrial and ventricular myocytes maintain a stable resting potential during Phase 4

(after the repolarisation); whereas other cardiomyocytes, such as nodal type cells, possess the

pacemaker current If which becomes active at hyperpolarised potential (DiFrancesco, 1993) , leading

to spontaneous depolarisation. In all cell types, ion pumps and exchangers, such as the sodium-

potassium (Na+/K+) pump and the sodium-calcium (Na+/Ca2+) exchanger (NCX), play an important
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role in Phase 4 by restoring the concentration gradient in preparation for another action potential

(Wang et al., 1996; Bers et al., 2003).

Here, only the major cardiac currents are described; for a detailed description, see for example Grant

(2009).

2.1.2 Cardiac arrhythmia and disruption to the action potential

Disorders in cardiac electrical activity can induce serious and sometimes lethal disturbances in

cardiac rhythm. Various factors can disrupt the action potential, for instance genetic mutations and

external factors such as pharmaceutical compounds.

Genetic mutations can result in structural differences in ion channels, which alter the way that the

channel conducts current and affect the action potential. For example, mutations of the fast sodium

channel have been associated with Brugada syndrome (Kapplinger et al., 2010; Han et al., 2018) and

type 3 Long QT2 (LQT) syndrome (Roden et al., 1996). Similarly, mutations of the slow delayed

rectifier current IKs and the rapid delayed rectifier current IKr contribute to two other major subtypes,

LQT1 and LQT2, respectively (Shimizu and Antzelevitch, 1998; Curran et al., 1995).

External effects can also affect ion channel function. For example, anti-arrhythmic drugs typically

bind to an ion channel, such as the fast sodium channel, the human Ether-à-go-go-Related Gene

(hERG) channel (the alpha subunit of the ion channel that carries the current IKr), or the L-type

calcium channel (Zipes and Jalife, 2009, Chapter 96). Anti-arrhythmic drugs alter the amount of

current flowing through certain channels or change their opening/closing dynamics. Anti-arrhythmic

drugs are intended to restore the action potential by altering the function of ion channels, but can also

have unintended side-effects that cause even more severe types of arrhythmia (Nattel and Carlsson,

2006). Furthermore, non-cardiac drugs can have a similar unintended effect on ion channels, and

increase the risk of arrhythmia. Therefore, it is important to find out potential side-effects any drug

might induce before it is taken by patients — leading to the vital requirement of cardiac safety testing

in drug development; we will shortly come back to this in Section 2.2.

2.1.3 Human stem cell-derived cardiomyocytes

For ethical reasons, human cardiomyocytes are rarely available and therefore are not routinely used

in cardiac safety screening. Instead, one of the most promising alternatives is to use human stem

cell-derived cardiomyocytes.

Stem cells are a type of cells that have not yet acquired a specific structure or function. Given

the right stimuli, they can differentiate, i.e. undergo structural and functional changes to become

specialised for a particular role. Human stem cells that can differentiate into cardiomyocytes are

available from two sources: human embryonic stem cells (hESCs) and human induced pluripotent

stem cells (hiPSCs).

2See Figure 2.1 that defines the QT interval of an ECG.
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The first type of human stem cells, hESCs, were derived first by Thomson et al. (1998), and the first

human embryonic stem cell-derived cardiomyocytes (hESC-CMs) were reported not long after by

Kehat et al. (2001). However, the use of embryonic cells has raised ethical concerns (Holm, 2008).

This is not the case for the other type of human stem cells, hiPSCs, which were first derived by

Takahashi et al. (2007). These hiPSCs can be generated by harvesting fully differentiated and mature

somatic cells from donors and reprogramming them to the pluripotent state. From this state, similarly

to hESCs, hiPSCs can be differentiated into any type of cell. The first method to induce these hiPSCs

into a cardiac lineage was developed by Zhang et al. (2009). The resulting cells are known as human

induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs).

Production of hiPSC-CMs has been improved to create a high yield of cardiomyocytes (Burridge

et al., 2011; Mummery et al., 2012). There are well-established methodologies (Lian et al., 2013),

although currently a lot of effort is dedicated to improving them. It has also been shown that

hiPSC-CMs can even come from different sources of the same donor, for example dermal fibroblasts,

peripheral blood mononuclear cells, etc., without their epigenetic memory resulting in a significant

impact on their electrophysiology (Riedel et al., 2014). These advantages allow hiPSC-CMs to be

used in many different applications, ranging from the study of human cardiac development to drug

safety assays and cardiac tissue repair. Furthermore, unlike hESC-CMs, hiPSC-CMs are harvested

from mature donors, which greatly increases their availability, can provide patient-specific cells, and

therefore can be used in testing personalised treatments (Robinton and Daley, 2012; Shi et al., 2017).

However, these stem cell-derived cardiomyocytes usually take an “immature form of adult cardiomy-

ocytes”, both in terms of their electrophysiology and their physical structure (Synnergren et al., 2012;

Lundy et al., 2013; Robertson et al., 2013; van den Heuvel et al., 2014), which has consequences for

drug safety testing (Jonsson et al., 2012). Therefore we need tools to translate the measurements

from these hiPSC-CMs to adult cardiomyocytes, as we discuss in the next chapter.

2.1.3.1 Electrophysiology

Human stem cell-derived cardiomyocytes share some important characteristics with adult cardiomy-

ocytes. For example, in terms of gene expression, hiPSC-CMs show a pattern that is similar to adult

cardiomyocytes (Kattman et al., 2011; Burridge et al., 2014; Bedada et al., 2016; Machiraju and

Greenway, 2019). However, these stem cell-derived cardiomyocytes express different expression

levels and isoforms of the ion channels, giving rise to different electrophysiological characteristics

compared to adult cardiomyocytes. The differences in each ionic current between hiPSC-CMs and

adult cardiomyocytes are reviewed in Chapter 3.

2.1.3.2 Physical structure and calcium handling

Adult cardiomyocytes have an elongated shape and are aligned within the cardiac muscle fibre, and

are about 110–130 µm long and 30–40 µm in diameter (Ohler et al., 2009). However, not only is

the average cell size of hiPSC-CMs smaller than the adult cardiomyocyte, typical diameters range

from 10–50 µm, they also have a generally circular shape and a lack of aligned sarcomere structures

(Gherghiceanu et al., 2011; Ma et al., 2011).
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The transverse tubule (T-tubule) network in stem cell-derived cardiomyocytes is not fully developed

(Lieu et al., 2009). Calcium handling in hiPSC-CMs is appreciably different to adult cardiomyocytes;

the calcium subsystem in hiPSC-CMs is largely underdeveloped, and the CICR mechanism, the

calcium buffering in the SR and the recycling of calcium by SERCA (sarco/endoplasmic reticulum

Ca2+-ATPase) are immature, as reviewed by, for example, Sedan and Binah (2011) and Blazeski

et al. (2012).

2.1.3.3 Difference between cell lines

HiPSC-CMs not only differ from adult cardiomyocytes but also exhibit differences amongst them-

selves. Recordings of hiPSCs are usually variable across different labs (Cahan and Daley, 2013), and

one major contribution to the variability in these hiPSC data is the variability between hiPSC lines,

as reviewed by Ortmann and Vallier (2017). In the next chapter, we look at the necessity of studying

the differences between cell lines for cardiac drug safety purposes.

The genetic background of the donors can be a dominant factor and result in functional differences

(Rouhani et al., 2014; Choi et al., 2015; Carcamo-Orive et al., 2017; DeBoever et al., 2017). Since

the genetic background of the donors is encoded in the hiPSCs, these hiPSCs have great potential

to be used, for example, as a tool to investigate complex genetic mechanisms involved in disease,

such as long QT syndrome (Moretti et al., 2010; Itzhaki et al., 2011a; Yazawa et al., 2011; Egashira

et al., 2012; Terrenoire et al., 2013), catecholaminergic polymorphic ventricular tachycardia (CPVT)

(Fatima et al., 2011; Itzhaki et al., 2012; Jung et al., 2012; Kujala et al., 2012), and arrhythmogenic

right ventricular cardiomyopathy (ARVC) (Ma et al., 2013). Using hiPSC-CMs to investigate these

mutations can provide crucial insights into cellular pro-arrhythmia mechanisms and the genotype-

phenotype correlation of cardiovascular diseases (Moretti et al., 2010; Yazawa et al., 2011; Egashira

et al., 2012; Jung et al., 2012; Kujala et al., 2012; Terrenoire et al., 2013).

2.2 Pharmaceutical Cardiac Safety Testing
Having now described the importance of cardiac drug safety testing and how hiPSC-CMs can be

used for this purpose, we discuss the current and an upcoming safety guidelines for cardiac drug

safety testing. This gives a strong motivation for the rest of the work presented in this thesis.

International drug safety regulations require that all newly developed compounds from any pharma-

ceutical company must be subjected to safety screening, a series of assays, before conducting any

human trials for safety and efficacy testing of the compound. Functional assays have been developed

to test whether a new compound binds to a particular ion channel. Other tests, for example ex vivo or

in vivo, look at the effects of the drug on a single cardiomyocyte or cardiovascular tissue function.

2.2.1 Current safety guidelines

The International Conference on Harmonisation (ICH) agree and publish safety testing guidelines

approved by all major national pharmaceutical regulators. Their S7A guidelines (ICH, 2001)

established tests for adverse effects to the cardiovascular, nervous and respiratory systems. The
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cardiovascular component of the ICH S7A guidelines recommended monitoring of blood pressure,

heart rate and changes in the electrocardiogram. However, it has been recognised that changes in these

quantities do not necessarily reflect high-risk ventricular arrhythmias. This led to the establishment

of the current safety guidelines: the ICH S7B and E14 guidelines (ICH, 2005a,b).

The ICH S7B guidelines (ICH, 2005b) describe a preclinical evaluation focused on the potential for

delayed ventricular repolarisation, as this is closely associated with arrhythmic risk (Yap and Camm,

2003). This includes an in vitro screen for block of the hERG channel which is now a standard

procedure for testing each new small molecule compound. The hERG channel encodes the pore-

forming alpha subunit of the ion channel KV11.1 that conducts the rapid delayed rectifier potassium

current, IKr (Sanguinetti et al., 1995). Reduction of IKr can prolong the ventricular action potential

(Jurkiewicz and Sanguinetti, 1993), increase the QT interval on the body-surface electrocardiogram,

and is associated with elevated risk of Torsade de Pointes (TdP) (Malik and Camm, 2001).

A variety of methods are used for ion channel screens. The gold standard for assessing ion channel

function is the manual patch clamp technique. Automated platforms allow generation of ion channel

data with high-throughput and turnover to facilitate drug development particularly in early screening

phases, see a comparison in Section 2.4.1. These screens include testing on heterologous expression

systems, where the hERG channel (or another) is expressed in, for example, Human Embryonic

Kidney (HEK) or Chinese Hamster Ovary (CHO) cells. Following the in vitro IKr assay, an in vivo

assessment of the QT interval in dogs, monkeys or guinea pigs is recommended. The QT interval is

used to indicate the influence of the drug on repolarisation time (Fermini and Fossa, 2003).

The ICH E14 guidelines (ICH, 2005a), on the other hand, focus on the clinical (human) evaluation of

the QT/QTc interval prolongation, in particular the “Thorough QT/QTc” study, where QTc interval is

the heart-rate-corrected QT interval (Moss, 1993). Normally the trial uses randomised, placebo- and

positive-controlled studies in healthy volunteers to evaluate the QT/QTc interval. One of the criteria

requires that if the drug prolongs the QT interval by more than 10 ms, then further electrocardiogram

studies are required in the later stages of safety testing (Shah, 2005). For further detail please refer to

ICH (2005a).

Cardiac safety liability contributes to more than 25% of compound attrition at the preclinical testing

stage (Laverty et al., 2011). However, these safety tests tend to give a high false positive rate, and

are not rigorous enough to (a) understand fully the underlying drug mechanism and (b) provide

translation of in vivo animal studies to human. Furthermore, the guidelines do not provide a clear

route for using preclinical data to support clinical decisions. With the advent of computational

modelling and novel assays using hiPSC-CMs, a new initiative for cardiac safety testing has been

proposed: the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative.

2.2.2 The CiPA initiative

The CiPA initiative was proposed in 2013 to replace the current safety guidelines which focus on

detecting delayed ventricular repolarisation. The proposed future cardiac safety tests have four

components (Sager et al., 2014; Fermini et al., 2016; Gintant et al., 2016):

12



Chapter 2

1. Investigate the functional effects of the compound on multiple human cardiac ion channels in

vitro.

2. Reconstruct the action potential with the effects of the compound using an in silico (mathemat-

ical) model of an adult human ventricular cell.

3. Compare the expected effects of #2 using human stem cell-derived cardiomyocytes.

4. Use clinical ECG (electrocardiogram) readings with new ECG markers to check for any

unexpected effects of the compound.

The first and last components revise and adapt the current safety guidelines. The proposed first

component extends the current focus on the hERG channel to multiple ion channels; in addition to

IKr, drug block of INa, ICaL, Ito, IKs, and IK1 will be tested. The fourth component will replace the

Thorough QT study in the current cardiac safety guidelines by examining any impact on the ECG in

smaller-scale trials.

The third component uses the technological advantages of hiPSC-CMs, however, the experimental

results from the hiPSC-CMs may not be directly comparable to that of adult cardiomyocytes nor their

mathematical model in the second component, as discussed in Section 2.1.3. We therefore anticipate

we would need mathematical models specifically designed for hiPSC-CMs to translate the results,

though this is not a key part of CiPA. In the next section, we look at the theory of modelling for

cardiac cellular electrophysiology that supports both the second component and the work presented

in this thesis.

2.3 Mathematical Modelling of Cellular
Electrophysiology

Mathematical modelling integrates our understanding of ion channel kinetics and cell behaviour

in a quantitative fashion, and can serve as a powerful tool to predict system behaviour. The first

biophysically-based mathematical description of an excitable cell was created by Hodgkin and

Huxley (1952a), who modelled the action potential of squid giant axons (Hodgkin and Huxley,

1952b,c,d) as a dynamical system. Axons are part of neurons, which are excitable cells. Even though

their structure and function are different from cardiomyocytes, the mechanisms underlying their

action potential are closely related. The first mathematical model of cardiac cell electrophysiology

was published by Noble (1960) and Hutter and Noble (1960).

2.3.1 The cell membrane as a circuit

The biophysical properties of the cell membrane can be expressed as an electronic circuit. The

membrane of the cell separates and accumulates electrically charged particles, such as ions, on

the two sides, it therefore can be described as a capacitor which has a capacitance Cm = Qm/Vm,

where Qm is the total charge separated by the membrane and Vm is the membrane potential. Ion

channels, pumps, and exchangers allow ionic currents to flow across the cell membrane, and thus can

be described as variable resistors. These variable resistors are driven by the electrochemical gradient

and/or actively pump ions across the membrane, which can be described as connecting batteries in
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Figure 2.3: A circuit representation of the Hodgkin and Huxley (1952a) model. The cell membrane is
illustrated as a cyan dashed line separating the intracellular and extracellular regions, which is represented
as a capacitor with capacitance Cm. The currents carried by Na+ and K+ are represented as a pair of
variable resistors, depending on the membrane voltage Vm, and are driven by a pair of batteries through the
electrodiffusion process. Finally, a normal resistor and battery model the leak current in the cell.

series. Each pair of variable resistor and battery is then connected in parallel to the capacitor. In

Hodgkin and Huxley (1952a), sodium and potassium currents, together with a leak current which

accounted for the remaining ionic currents, were first considered. The resulting equivalent circuit is

shown in Figure 2.3.

With this simplified model of the cell membrane and assuming Cm does not change over time,

together with Kirchhoff’s current law, it can be shown that the total current is

Cm
dVm

dt
+ Iion = 0, (2.1)

where Iion is the total contribution of all ionic currents,
∑

j I j, from each type j of the current.

Therefore, we come to a dynamical description of the membrane voltage:

dVm

dt
= −

1
Cm

∑
j

I j. (2.2)

An external current Istim can be added to the model to represent the stimulus current, which can be a

stimulus from other cells or an artificial external stimulus, giving

dVm

dt
= −

1
Cm

∑
j

I j + Istim

 . (2.3)

We now describe the formulation of the ionic current I j.

2.3.2 Ion channel models

To model ionic currents I j in Eq. (2.3), we often assume that their conduction is Ohmic (see

Section 2.3.2.4 for a different assumption), that is Ohm’s law I j = ∆V j/R j holds, where ∆V j is a

difference in electric potential and R j is an electrical resistance. By definition, we can equivalently

use conductance, in units of Siemens, G j ≡ 1/R j to describe the current. To model the voltage

difference ∆V j, we have to consider the driving force of the charge movement, which is a balance

between electrical driving force and diffusion. This can be calculated by using the Nernst equation.
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2.3.2.1 The Nernst equilibrium potential

The Nernst equation determines the induced potential difference under an ionic concentration gradient.

Suppose we have a system containing two types of ion S and S ′. Ion channels specific to ion S

selectively allow ion S to pass across the membrane; while the other ions S ′ remain unchanged. At

each instance, if the concentration of S on either side of the membrane is [S ]i and [S ]o, and the

electrical potential is φi and φo, then the Gibbs free energy of ion S is

GS ,i = G
0
S + RT ln([S ]i) + zS Fφi, (2.4)

GS ,e = G
0
S + RT ln([S ]o) + zS Fφo, (2.5)

for each side of the membrane: the intracellular and extracellular regions, which are denoted with

subscripts i and o, respectively. The first term on the right-hand side of Eq. (2.4) and (2.5), G0
S , is the

reference free energy, a constant, of ion S, the second term is the chemical potential, and the last term

is the electrical potential of the system, where zS denotes the valency of ion S, T the temperature,

and R, F are the ideal gas constant and Faraday’s constant, respectively.

The difference in free energy, ∆GS , determines the preferential state of the system, driving the

movement of the ion S, and is defined by

∆GS = GS ,i −GS ,e (2.6)

= RT ln
(
[S ]i
[S ]o

)
+ zS F(φi − φo), (2.7)

where (φi − φo) defines the membrane potential Vm. Therefore, by defining ES as the membrane

potential at which the net movement of ion S is zero, that is when the diffusion of S is exactly

balanced by the electrical potential difference and hence ∆G = 0, then we arrive at the Nernst

equation

ES =
RT
zS F

ln
(
[S ]i
[S ]o

)
. (2.8)

ES is known as the Nernst potential or reversal potential, as it determines the direction of the flow of

ion S. Further details on the derivation can be found in, for example, Levine (1978) and Denbigh

(1981).

2.3.2.2 Ionic current across the cellular membrane

If we consider a cell with only one type of ion channel which is selective for ion S, then the potential

difference across the channel, i.e. the membrane voltage Vm, can be assumed to have two components:

first, the potential drop due to concentration difference, given by Eq. (2.8); and, second, the potential

drop due to the ion channel resistance R jI j, given the assumption of Ohmic ionic current. This gives

Vm = R j I j + ES , (2.9)

for the ion channel that conducts current of type j and is specific to ion S. Rearranging Eq. (2.9) and

replacing the reciprocal of resistance 1/R j with conductance G j, we obtain

I j = G j (Vm − ES ). (2.10)
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2.3.2.3 Conductances are voltage-dependent

As described in Section 2.1.1, the ion channels of interest are mostly voltage-gated, and that means

the conductance G j is not constant but is voltage-dependent. The channel conductance can be

expressed as

G j = g j f j(Vm, t | θ), (2.11)

where g j is the maximum possible conductance of the channels of type j. f j ∈ [0, 1] is the open

state occupancy (also called open probability, see Section 2.3.2.5) that determines the kinetics (or

dynamics) of the channels j. θ is a vector of parameters that defines the function f j.

This is a common way of expressing ion channel conductances. The form of f j and the vector of

parameters θ vary across ion channels, and define the behaviour of the channels.

2.3.2.4 Non-Ohmic ionic current: GHK flux equation

The formulation given by Eq. (2.10) and Eq. (2.11) assumes the ionic current is Ohmic, which is a

linear approximation to the transmembrane ionic currents. An alternative formulation is known as

the Goldman-Hodgkin-Katz (GHK) equation which is a simplified solution of the Nernst-Planck

equation (Hille, 2001).

The Nernst-Planck equation that describes the electrodiffusion process is

J j = −D j

(
∇cS +

zS F
RT

cS∇φ
)

, (2.12)

where J j (mol m−2s−1) is the flux density of the ion S through the channels of type j, D j (m2s−1) the

diffusion constant, cS (mol m−3) the concentration, and φ (V) is the electric potential. The first term

on the right-hand side is Fick’s law of diffusion; the second term is Planck’s equation that describes

the flow of ions driven by the electric field.

Suppose that the electrical field is constant throughout the membrane of thickness L (known as

the constant field approximation) and that the flow of ions and the electric field are transverse to

the membrane which reduces Eq. (2.12) to a one-dimensional problem. Also suppose that the cell

membrane extends from x = 0 (the inside) to x = L (the outside), then ∇φ becomes −Vm/L with

Vm = φ(0) − φ(L). The Nernst-Planck equation in Eq. (2.12) is reduced to

J j = −D j

(
dcS

dx
+

zS F
RT

cS
Vm

L

)
. (2.13)

Together with the boundary conditions for the concentration cS , where cS (0) = [S ]i and cS (L) =

[S ]o, the solution to Eq. (2.13) becomes

I j = P j z2
S

VmF2

RT
[S ]i − [S ]oe−zS VmF/RT

1 − e−zS VmF/RT
. (2.14)

This is known as the GHK flux equation (Goldman, 1943), where I j = J jzF is the electrical current

density through the transmembrane channel of type j, and P j = D j/L is the permeability which

defines the ease of crossing the membrane and is measured in moles per second. The GHK flux

equation reduces to Eq. (2.8) the Nernst potential when the current is zero.
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The permeability P j can then be expressed, in a similar way to the conductance G j in Eq. (2.11), as

P j = P j f j(Vm, t | θ), (2.15)

where P j is the maximum possible permeability of the channel of type j.

Typical cardiac electrophysiology models contain a mix of GHK equation and Ohmic equation types

of ionic current models. The choice of the model depends the model assumptions and the knowledge

of the current: usually when there is an open pore that is selective for one kind of ion, then an Ohmic

model is used; when there are multiple ions involved, for example as in an ion pump or exchanger,

then a GHK formulation is used (Hille, 2001).

2.3.2.5 A note on stochasticity and single channels

In both Sections 2.3.2.3 and 2.3.2.4 the current I j describes the current carried by all channels of a

certain type. The current carried by an individual channel was first measured by Neher and Sakmann

(1976), who found that single channels open (i.e. conduct current) and close stochastically. These

single channels have open probabilities dictated by the energy landscape of the protein conformations

(the spatial or structural arrangements of the protein by rotation of the atoms about single bonds).

There are statistical and mathematical theories to model single ion channels, the most common

models describe the process as discrete-state continuous-time Markov process (Gillespie, 1976).

The macroscopic current I j with open state occupancy f j therefore works by approximating the

proportion of the stochastically-opening and closing single channels that are in an open state. The

approximation relies on the number of single channels of type j in the cell to be large (Pullan et al.,

2005); to approximate such stochastic behaviour well, Muench et al. (2020) predicted that it would

require 103 to 104 channels. For example for IKr and hERG, the single channel conductance was

estimated to be 2 pS at physiological ionic concentration (Veldkamp et al., 1995; Kiehn et al., 1996;

Liu et al., 2004). The maximum conductance of IKr was estimated to be 7–18 nS (Ten Tusscher et al.,

2004; O’Hara et al., 2011); the maximum conductance g j of the macroscopic current is the total

number of single channels of type j times the conductance of one single channel, hence the number

of single channels conducting IKr in adult cardiomyocytes would be 4 × 103 to 9 × 103. Similarly,

the maximum conductance of CHO cells over-expressing hERG was estimated to be 20–160 nS

(Beattie et al., 2018; Lei et al., 2019a,b), which means the number of hERG channels would be 104

to 8 × 104 in the hERG-transfected CHO cells. Therefore modelling the macroscopic current using a

deterministic approximation is usually sufficient.

2.3.2.6 Two common formulations of the open state occupancy

The two common formulations for the open state occupancy f j are the Hodgkin-Huxley model

formulation and the Markov model (also known as Markov states model) formulation.

The Hodgkin-Huxley model formulation uses the idea of independently varying channel ‘gates’ to

describe the open state occupancy f j. These channel gates are modelled as dimensionless variables

∈ [0, 1]. Hence f j is the product of one or more independent gating variables. For example, a
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commonly used IKr model under the Hodgkin-Huxley model formulation is a combination of an

‘activation’ gate x1 and an ‘inactivation’ gate x2, with the open state occupancy given by

fKr =
∏

k

xk = x1(Vm) x2(Vm), (2.16)

where both x1 and x2 are functions of Vm (see e.g. Ten Tusscher et al., 2004). Then the open state

occupancy (x) and closed probability (1 − x) of a gate is modelled as

(1 − x)
α(Vm)
−−−−−⇀↽−−−−−
β(Vm)

x, (2.17)

where α and β are the opening and closing rates (also known as the transition rates). This allows us

to write down the rate of change of x as

dx
dt

= α(Vm) (1 − x) − β(Vm) x. (2.18)

This is often expressed in a slightly different form which has an explicit steady state value (x∞) and a

rate of approaching the steady state given by some time constant (τx):

dx
dt

=
x∞(Vm) − x
τx(Vm)

, (2.19)

where x∞ = α/(α+ β) and τx = 1/(α+ β).

The opening and closing rates can be modelled using transition state theory to give

α(Vm) = A exp (BVm) , (2.20)

β(Vm) = C exp (−DVm) , (2.21)

where A, B, C, D are constants at a given temperature. We discuss their temperature dependence form

in Chapter 5.

To derive the rate of transition between two states, the occupancy of two states p(a), p(b) at

equilibrium is assumed to follow a Maxwell-Boltzmann distribution:

p(a)
p(b)

= exp
(
−

∆Ga,b

RT

)
, (2.22)

where ∆Ga,b is the Gibbs free energy difference between the a and b states, R the ideal gas constant,

and T the absolute temperature. The Gibbs free energy ∆Ga,b is assumed to be linearly proportional

to the membrane potential Vm. Assuming a simple energy barrier model, where only one rate-limiting

step is required to transition between two states, the transition rate is then directly proportional to

the fraction of system in the excited state, which leads to the commonly-used exponential form in

Eqs. (2.20) and (2.21), see e.g. Tsien and Noble (1969); Stevens (1978); Hille (2001).

The Markov model formulation3, in contrast, explicitly describes the kinetic states of ion channels,

which represent the changes in channel protein conformation as a means of predicting currents. This

3Note that this Markov model formulation is different from the Markov process mentioned in Section 2.3.2.5; here we
are only interested in the dynamics of the probability which is deterministic.
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formulation was proposed to overcome the limitation of the Hodgkin-Huxley model formulation, for

example the independent gates assumption. In the Markov model formulation, Eq. (2.17) would be

written as

(closed) C
α(Vm)
−−−−−⇀↽−−−−−
β(Vm)

O (open), (2.23)

where the previous closed gate (1 − x) is now considered as one conformational state of the channel

with a probability C, and the open gate is another conformational state with a probability O. Then

Eq. (2.18) becomes

dO
dt

= α(Vm)C − β(Vm)O, (2.24)

dC
dt

= β(Vm)O − α(Vm)C. (2.25)

This can be rewritten as a general system of linear differential equations

du
dt

= A(Vm, t)u, (2.26)

where u is a vector of dynamical variables, the states, and A is a coefficient matrix, usually known as

the transition matrix, defined by

u =

[
O
C

]
, A =

[
−β(Vm) +α(Vm)
+β(Vm) −α(Vm)

]
. (2.27)

This Markov model satisfies the state conservation law, as the sum of all states (probabilities) is one.

This implies that the columns of the transition matrix sum to zero, and that the dimensionality of the

Markov model can always be reduced by one. The transition rates of the model are also required to

obey the principle of microscopic reversibility4, see for example Läuger et al. (1980); Läuger (1985);

Rothberg and Magleby (2001); Colquhoun et al. (2004); Nagy and Tóth (2012). Finally, the open

state occupancy of the channel is the sum of probabilities at open states:

fi =
∑

k

Ok. (2.28)

The conversion from the Markov model to the Hodgkin-Huxley model is only possible when the

Markov model has a particular symmetry, so the Hodgkin-Huxley model formulation is a special case

of the Markov model. This is because the Markov model generalises by dropping the independent

gate assumption.

In this thesis, we assume the model structure (the set of model equations) is known, either proposed,

adapted, or taken from the literature with (theoretical) justifications. We are interested in finding

the parameters of these equations that can describe experimental observations with physiologically-

relevant meanings, see Section 2.6. Although we do not consider finding the ‘correct’ model structure

in this thesis, in a publication that I led (Lei et al., 2020c), we discussed methods and considerations

needed when calibrating models that are slightly wrong (known as model misspecification or model

discrepancy, see also discussion in Section 2.7.2).
4This is also known as “detailed balance”, and it requires that, in the absence of an external energy source driving the

process, the rate of transition in each direction between any two states must be the same at thermodynamic equilibrium.
This also means that time is reversible at equilibrium, and hence the name “microscopic reversibility”.
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2.4 Experimental Measurements of Ionic
Currents

Electrophysiological models in the form of Eq. (2.3) have two observables, the voltage V and the

current I. The first measurement of an action potential was in 1868, where an impulse propagation

was observed in frog nerves by Julius Bernstein who invented the ‘differential rheotome’ (Schuetze,

1983). Later, in 1947, ionic currents were for the first time directly recorded using a feedback

amplifier (a detailed explanation and mathematical model is presented in Chapter 6) which controls

the membrane potential while simultaneously measuring transmembrane currents, and is now known

as voltage clamping (Cole, 1968; Huxley, 2002; Verkhratsky et al., 2006). Such a system can also be

used to observe the action potential by measuring the membrane voltage while injecting a stimulus

current to the cell, known as current clamping, also see Hodgkin (1950).

Later, variations of the method discovered by Neher and Sakmann (1976) were developed, which are

collectively known as patch clamping. One of these is known as the ‘whole-cell patch clamp’, see

Figure 2.4A. During whole-cell patch clamp, a pipette is placed against the cell membrane and, by

applying suction, pulls a small patch of membrane into the pipette to form a tight seal. The tight seal

ensures only a very small amount of, if any, leakage current (also called the leak current) to flow

between the pipette tip and the cell membrane. To allow electrical access to the interior of the cell, a

second short burst of suction is applied to break through the membrane while having the cell remain

attached. Both the extracellular and intracellular potentials can now be measured, and therefore the

transmembrane voltage can be determined.

Voltage-clamp experiments are a common source of data for studying ion channels. This whole-cell

voltage-clamp technique measures the overall transmembrane current. There are two main ways to

distinguish and separate out individual currents. First, each individual current behaves differently,

Cell

Pipette
External solution

Amplifier

Amplifier

External solution

Internal solution

(A) (B)

Internal solution

Cell

Na+
K+

Na+

K+

Leakage
Leakage

CaF2

Figure 2.4: A schematic overview of the whole-cell patch-clamp experiment in a manual setup and an
automated setup, adapted from a publication that I led (Lei et al., 2020b). (A) Shows the conventional manual
patch-clamp, where a polished glass pipette is placed on the cell and suction is applied to form a tight seal.
(B) Shows the planar design of an automated patch-clamp, where the cell is suspended on top of a micro-pore
with the presence of a seal enhancer CaF2. The grey box, amplifier, applies a command voltage to the cell
through the feedback action of the input operational amplifier; a more detailed version of the setup is presented
and studied in Chapter 6.
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as each of them needs to take part in a different role and is hopefully uniquely identifiable during

the action potential. Therefore, by varying the membrane voltage in different patterns, different and

distinctive dynamics can be elicited. Second, each ion channel can be bound to different chemical

compounds, known as channel blockers. Some of the channel blockers can be selective to a particular

ion channel, which allows us to selectively inhibit one of the ion channels at a time, and hence we

can deduce the dynamics of one particular type of current.

The current-clamp technique measures the membrane voltage of the cell. As described in Sec-

tion 2.1.1, not all of the cells exhibit spontaneous excitation, many of the cardiac muscle cells require

external stimulus (neighbouring cells in the heart) to generate action potentials. Therefore usually in a

current-clamp setup, stimulus current is injected to the cell to cause excitation and generate an action

potential. Unlike voltage clamping, where the dynamics of the voltage-gated ion channel currents

are isolated (decoupled) by clamping the membrane voltage, in current clamping, the observed

membrane voltage is the result of the complex coupling of the channel current dynamics. Therefore

the current-clamp technique is usually not used as the tool for studying the dynamical behaviour of

the ion channel current kinetics, but rather used to learn the missing pieces of this complex coupled

system or the maximum conductances of the currents (see e.g. Johnstone et al., 2016b). However, the

latter has been shown to be error prone if we do not have a complete understanding of each of the

current kinetics (Lei et al., 2020c).

2.4.1 Modern experimental techniques: manual and automated setups

Whole-cell patch-clamp experiments can be performed using either manual control of a pipette’s

position or on automated high-throughput machines based on microfluidics. Manual patch is the

conventional method, but it can be very time consuming and low-throughput; whilst automated

platforms allow high-throughput recordings, which can be extremely useful for studies that require

high numbers of measurements such as drug screening in the pharmaceutical industry (Elkins et al.,

2013), as discussed in Section 2.2.

A schematic comparison of the two patch-clamp methods is shown in Figure 2.4. Manual patch-

clamp uses a fire-polished glass pipette to form a tight electrical seal (∼GΩ) between the pipette

tip and the cell membrane. Although the composition of the ionic solutions in the pipette and bath

depends on the type of experiments, these solutions are usually intended to be similar to the relevant

physiological conditions. Automated platforms, on the other hand, usually have a very different

configuration to manual patch, see Figure 2.4B; they use a design where the cells are suspended on

top of a micro-pore on a planar surface. However, this planar design does not always yield as tight

a seal (∼ hundreds of MΩ) as the conventional manual patch-clamp. Seals can be enhanced in the

presence of certain additional ions in the two solutions. For instance, a F− containing internal solution

together with a Ca2+ containing external solution has been used with manual patching (Tasaki and

Takenaka, 1964; Kostyuk et al., 1975), and is used with many automated platforms (Kramer et al.,

2020). The improvement of seal resistance with these solutions is thought to be due to the formation

of CaF2 crystals at the interface between the pipette or micro-pore and the cell, see Figure 2.4B inset;

we discuss our findings of the (side-)effects due to the presence of CaF2 in Chapter 4.
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Many studies have compared manual patch clamping with automated patch clamping data, and

showed that their performances are similar (Billet et al., 2017; Li et al., 2017b). In recent years many

studies have begun to use automated patch-clamp systems to study ion channel electrophysiology (Li

et al., 2017b; Vanoye et al., 2018; Gertler et al., 2019; Kang et al., 2019; Ng et al., 2020; Kozek et al.,

2020; Toh et al., 2020), as well as the rest of this thesis.

2.5 Constructing Mathematical Models in
Practice

In this section, we review the methods for constructing the mathematical models introduced in

Section 2.3 using the experimental techniques described in Section 2.4.

2.5.1 A conventional approach

One typical way of studying the dynamics of the ionic current is through summary statistics. Hodgkin

and Huxley (1952a), who proposed the first models of ionic currents, used these summary statistics

to isolate and measure different aspects of ionic currents, for example time constants and voltage-

dependent steady states. Following in their footsteps, many voltage-clamp protocols have been

designed to highlight particular current kinetics. Typically, these protocols involve long sections

during which the channels are brought into a particular steady state, before a brief interval during

which a current is measured and then summarised using either a peak current or by fitting an

exponential curve and deriving a time constant; we refer to these kinds of voltage protocol as the

‘traditional’ or ‘conventional’ protocols.

For example, the voltage-dependency of the inactivation steady state of an ion current is usually

measured by holding a cell at a particular voltage which opens the ion channels, and then stepping

the voltage up (Bendahhou et al., 1999). Then the voltage-dependency of the inactivation gating

is elicited by plotting the normalised maximum current measured after each of the voltage steps

against their respective voltages, known as the current-voltage (I-V) relation which is a type of

summary statistic. Similarly, there are different typical voltage-clamp protocols for studying the

voltage-dependency of the activation steady state, as well as for the voltage-dependency of the

activation and inactivation time constants known as the τ-V relation.

Clerx et al. (2019a) summarises three different ways of using these conventional voltage-clamp

measurements to characterise an ion channel kinetics model, in brief: (1) we can derive the steady

state and time constant values in Eq. (2.19) by directly fitting the model equations to the I-V or

τ-V relations; (2) we can simulate the model using those conventional voltage-clamp protocols to

derive the I-V or τ-V relations, then we can fit these simulated relations to the experimentally derived

I-V or τ-V relations; (3) we can directly use the simulated current traces from these conventional

voltage-clamp protocols to fit to the raw current trace measurements. It is shown that method (3),

using the raw current traces, outperforms the first two methods in terms of accuracy of predicting

unseen cases and computational efficiency.
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By design, these conventional protocols focus on a single aspect of an ion current so several such

protocols are needed to parameterise a model fully. We revisit improvements for these conventional

protocols through experimental design in Chapter 4.

2.5.2 A note on typical model building process

Since the first mathematical model of cardiac cell electrophysiology was published by Noble (1960),

over two hundred models of cardiac electrophysiology have been published that collectively aim

to capture the full complexity of cardiac cellular behaviour under a broad range of experimental

conditions. Successive generations of models have often been built by partially ‘tuning’ parameters

from the older generations to ‘fit’ a new experimental situation, or simply by borrowing parameters

that are difficult to determine from one model to another; see for example Section 2.5.2.1. The

trouble with these model building processes is that they can sometime ignore the fact that these

parameters were derived under different experimental conditions or even for different species. This

problem was illustrated in a meta-analysis by Niederer et al. (2009) that showed how modern human

ventricular models include parameters that have been inherited from studies in at least nine different

species, covering at least six different temperatures between 12–37 ◦C. Even more challenging is

adapting a model to incorporate for example a new current, or to represent a new cell type, species or

temperature; some of these issues are discussed in Section 2.7.2.

We discussed the inefficiency of the conventional voltage-clamp protocols in the previous section.

Therefore, one of the obvious but important questions to address is what experiments need to be

performed for updating the parameters of the models? What should be a well-recorded process has

often not been recorded in the literature and is now lost. In the rest of this thesis, we address parts of

these challenges, for example: in Chapter 4, we design experiments to calibrate a hERG potassium

channel; in Chapter 5, we show the challenges and issues of adapting a model to represent a new

temperature; in Chapter 7, we use optimal experimental design techniques to design experiments for

inferring ion channel densities.

2.5.2.1 An example: the building process of hiPSC-CM models

Human stem cell-derived cardiomyocyte models were constructed by reparameterising an adult

cardiomyocyte model using human stem cell-derived cardiomyocyte data. The first model of hESC-

CM model was by Paci et al. (2012), which includes the early and late stages of maturation. Then,

based on the experimental dataset of hiPSC-CM from Ma et al. (2011), the earlier hESC-CM model

was reparameterised to the Paci et al. (2013) model. Note that the data from Ma et al. (2011), and

hence the Paci et al. (2013) model, is based on only one of the commercially available hiPSC-CM

cell lines from Cellular Dynamic International (CDI, iCell). Therefore the model does not capture

the variability between cell lines discussed in Section 2.1.3.3.

Figure 2.5 shows a schematic overview of the Paci et al. (2013) model. It includes a fast sodium

current INa, a two-part leak (or background) current INa,b and ICa,b. The potassium current consists

of four different parts, and each of them exhibits distinctive dynamics, which is a common splitting

as in the adult cardiomyocyte models (for example the O’Hara et al. (2011) model). Finally, it has a
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Figure 2.5: A schematic of a hiPSC-CM model (Paci et al., 2013). This model schematic reveals the structural
immaturity of hiPSC-CMs, as it only has the main cytosol and the SR compartment which relates to Ca2+

storage and release. As in Figure 2.2, ion channels are shown in blue, pumps in purple, and exchangers in
green. Background and leak currents are represented as grey channels. The arrows indicate the main direction
of the current through the channels.

Ca2+ current ICaL, together with several pumps and exchangers. The simple compartment structure

shown in the schematic reflects the structural immaturity of these hiPSC-CMs.

The Paci et al. (2013) model provides both atrial-like and ventricular-like hiPSC-CMs versions

(through differences in parameter values). Most of the membrane currents in the Paci et al. (2013)

model are adapted from adult cardiomyocyte models such as the Ten Tusscher et al. (2004) (also

known as the ‘TNNP’) model and the Grandi et al. (2009) model; while the calcium concentration in

the SR compartment is adapted from the Paci et al. (2012) model. It has been used to investigate the

electrophysiological differences between hiPSC-CMs and adult cardiomyocytes (Paci et al., 2015); it

shows that the Paci et al. (2013) model (hiPSC-CMs) is more sensitive to ICaL and IK1 than the adult

cell model of O’Hara et al. (2011).

In the Paci et al. (2013) model, the spontaneous depolarisation is purely driven by the pacemaker-like

current, the funny current If, which is thought to be unrealistic, as discussed in Section 2.1.3.1.

Therefore, a recently published model by Koivumäki et al. (2018) takes the structural immaturity

property of hiPSC-CMs into account and improves the calcium transient model of the Paci et al.

(2013) model. Paci et al. (2018) also attempted to improve the Paci et al. (2013) model by refining

the calcium transient model without the detailed spatial modelling as done in the Koivumäki et al.

(2018) model. Jæger et al. (2020) attempted to ‘mix-and-match’ the human adult cardiomyocyte

models (O’Hara et al., 2011; Grandi et al., 2010) with the Paci et al. (2013) model. Recently, Kernik

et al. (2019) and Paci et al. (2020) also tried to incorporate different experimental data into the model

building process.

2.5.3 Computational and numerical methods

To study the current or the membrane voltage, we need to solve the nonlinear coupled differential

equations in Eq. (2.10) or Eq. (2.3). However, there is no simple general analytical solution for

these differential equations unless we are at a fixed voltage. Computational modelling enables us

to simulate and visualise the complex coupling and interaction between the ion currents; see e.g.

Figure 2.2 showing the solutions (current and voltage) of the O’Hara et al. (2011) model.
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Numerical methods for solving differential equations are rooted in the explicit forward-Euler method

from 1768 (Brezinski and Wuytack, 2012). After which many different numerical schemes have

been developed, such as the Runge-Kutta method. However, the system of equations in cellular

electrophysiology is stiff (Cooper et al., 2015), with variables changing over very different timescales.

As a result, many higher-order adaptive explicit schemes are less beneficial due to stability issues.

Implicit methods offer better stability but can be computationally intensive. As discussed in Clerx

and Collins (2014) and Cooper et al. (2015), one of the best approaches is to use an implicit adaptive

multi-step method such as CVODE (Hindmarsh et al., 2005). In this thesis, all the simulations were

performed using CVODE through Myokit, a Python interface (Clerx et al., 2016).

The error tolerance of adaptive step solvers controls the accuracy of the numerical solution; the

smaller the better, but the longer it takes to solve the equations. There are two types of tolerance in

adaptive step solvers: an absolute tolerance that determine the accuracy when the solution approaches

zero and a relative tolerance that controls the error tolerance relative to the size of the solution

when the solution is large. Johnstone (2018, Chapter 4) showed that the tolerance of the solver can

introduce numerical ‘noise’ (on the likelihood surface, see e.g. Eq. (2.33)) when we try to find model

parameters. To avoid this issue, we set tolerances within the CVODE solver to abs_tol = 10−8 and

rel_tol = 10−10 unless otherwise specified.

2.6 Finding the Model Parameters
Once a mathematical model f (θ) with a vector of parameters θ has been decided and some data

Y have been observed, we want to match the model output to the data to learn the parameters.

That is, we want to ask at what parameter set does the model give a specific output that (in some

way) best matches the data — the fundamental question that we have to come across in answering

the research questions set out in this thesis. This process is known as an inverse problem, model

calibration, or model training (see a list of similar terminologies in Lei et al., 2020c). Figure 2.6

shows the parameters that we are typically interested in determining through calibration, adapted

from Whittaker et al. (2020), a recent review that I co-authored which discusses some of the practical

aspects in detail. In this section, we discuss some of the theories behind model calibration.
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Figure 2.6: A schematic overview of cardiac electrophysiology models and parameters to calibrate. (Left) An
action potential model contains submodels for its ion channels, pumps, and transporters. Typically the magni-
tude of each current type (maximum conductance or permeability) is the parameter of interest. (Right) Open
state occupancy models determine the current kinetics as discussed in Section 2.3.2.6. Usually the parameters
of these rate coefficients are the parameters of interest. Adapted from Whittaker et al. (2020).
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Frequentist statistics

One way of finding the parameters is to minimise the difference between the data and the simulation

using some measure g such as the sum of square differences:

θ̂ = argmin
θ∈Θ

g(θ) = argmin
θ∈Θ

∑
i

(Yi − fi)
2 , (2.29)

where Θ is the parameter space, and i indicates each data point in the dataset. This is known as the

method of least squares. Alternatively we can maximise a likelihood L

θ̂ = argmax
θ∈Θ

∏
i

Li(θ | Yi). (2.30)

The latter method is known as maximum likelihood estimation.

If we assume that the data Yi can be modelled as

Yi ≈ yi = fi(θ) + εi, with εi ∼ N(0,σ2), (2.31)

i.e. independent and identically distributed (i.i.d.) Gaussian noise, and that we have K datasets, then

the likelihood is given by

L(θ | Y) = p(Y | θ) (2.32)

=
1

(2πσ2)K/2
exp

−∑K
i=1 (Yi − fi)

2

2σ2

 . (2.33)

The i.i.d. assumption has recently been shown in some circumstances to be oversimplified (Lei et al.,

2020c; Muench et al., 2020; Creswell et al., 2020), but is used mostly throughout this thesis.

Both of these two methods give a point (single value) estimate of the parameters θ̂ in the parameter

space. Although this can be easily expressed, the minimisation (or maximisation) problems —

generally known as optimisation problems — are by no means easy to solve. We discuss numerical

methods and approximations to these problems below, Section 2.6.1.1.

Bayesian inference

One can also use the Bayesian approach to perform statistical inference, where we no longer

consider the parameters as some fixed values to be optimised but treat them as a vector of random

variables described by some joint probability distribution. Considering the parameters as random

variables enables us to model or quantify the uncertainty in the parameters (see further discussion in

Section 2.7). To do so, we have to realise that in the likelihood Eq. (2.32), we have presupposed a

cause (the model parameters) to derive the probability of a particular effect (the data). The central

idea of the Bayesian approach is that we can reverse this relationship using Bayes’ theorem:

p(Y | θ)︸   ︷︷   ︸
Likelihood

Bayes’ theorem
−−−−−−−−−−−→ p(θ | Y)︸   ︷︷   ︸

Posterior

. (2.34)
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As stated by Bayes’ theorem, we combine prior information of the model parameters p(θ) with

the likelihood of the data given each parameter p(Y | θ), to obtain the posterior distribution of the

parameters

p(θ | Y) =
p(Y | θ)p(θ)

p(Y)
(2.35)

∝ p(Y | θ)p(θ). (2.36)

The denominator of Eq. (2.35) is known as the marginal likelihood of the model, or model evidence,

and can be obtained by

p(Y) =
∫

Θ

p(Y | θ)p(θ) dθ, (2.37)

which is a constant. The marginal likelihood integrates over the parameter space, also known as the

support in statistical terms when referring to a distribution. However, the marginal likelihood is not

easy to compute in high dimensions (large numbers of parameters), see also Foster et al. (2020) a

preprint that I co-authored. We therefore need methods to approximate the posterior distribution;

computational methods to approximate posterior distributions are discussed below, in Section 2.6.1.2.

Ideally we would always describe the parameters using the probability (posterior) distribution. Some

times we quote the moments or the mode (known as a maximum a posteriori (MAP) estimate) of the

distribution5. For example, we may describe a parameter with its mean value, which is essentially a

weighted (with the probability density function) mean in the Bayesian framework. We calculate this

with the following integral:

E(θ | Y) =
∫

Θ

p(θ | Y)θ dθ. (2.38)

A point estimate can be dangerous to use without some measure of our confidence in the value. A

useful measure of uncertainty is the variance of the parameters:

Var(θ | Y) =
∫

Θ

p(θ | Y)
(
θ − (E(θ | Y))2) dθ. (2.39)

In terms of model prediction ypred, the uncertainty in the obtained parameters can be easily forward

propagated using the Bayesian framework. That is, we no longer provide a single prediction but a

probability distribution:

p(ypred | Y) =
∫

Θ

p(ypred | θ, Y)p(θ | Y) dθ. (2.40)

This is also known as the posterior predictive distribution. The first term of the integrand can be

computed by

p(ypred | θ, Y) = p(ypred | θ) = N( f (θ),σ). (2.41)

The first equality is because the prediction (of the new scenario) ypred is independent of the sample

data Y; the second equality comes from the i.i.d. noise assumption in Eq. (2.31).

5Often these are called summary statistics, however, do not confuse these with those described in Section 2.5.1.
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2.6.1 Computational methods

For the cellular electrophysiology described in this thesis, there is no simple analytical form for

any of the equations above, therefore we need computational methods to solve them. A naive way

of doing this is to perform a simple grid search by repeatedly evaluating all possible parameter

values to find the optimum. If the model had one or two parameters, this could be a simple and

intuitive approach. However, this method becomes impractical if each evaluation takes a considerable

amount of time or the model is high-dimensional (e.g. number of parameters > 8). Typically, cellular

electrophysiology models using the solver and setting as described above and running on a typical

desktop (e.g. Ubuntu 20.04 using IntelR CoreTM i7-6700HQ CPU running at 2.60 GHz) take O(1) s6

to complete one simulation. Even a simple ion channel kinetics model has about eight parameters

(Beattie et al., 2018). All of these factors make it impractical7 for us to perform a simple grid

search for optimisation or to obtain the posterior distribution of the parameters. Therefore we need

more sophisticated algorithms to solve the inverse problem, for either optimisation or sampling the

posterior distribution.

In this thesis, all optimisation and sampling were performed using an open source Python package

that I have co-developed, “Probabilistic Inference on Noisy Time Series” (PINTS, Clerx et al., 2019b)

unless otherwise specified. PINTS is developed not only for cardiac electrophysiology, but for general

statistical inference for dynamical systems and time-series problems. Unlike many other available

inference software, PINTS provides many methods for optimisation and sampling, so that these can

be tried easily and quickly within various statistical frameworks (likelihoods, prior distributions and

measures of model fit). The design of PINTS also acknowledges the fact that dynamical systems can

be difficult to solve, and that different numerical solvers can be beneficial for different problems (as

discussed in Section 2.5.3), so expects users might already have spent months and years building a

computational model (e.g. a simulation) of their problem. Therefore PINTS does not require users

to re-implement their problems using a particular solver or software language, and all it requires is

a Python wrapper for the forward simulation when given a set of model parameters to be inferred.

The package provides a wealth of optimisation and sampling algorithms that are fully tested for their

implementations; in the rest of this section, I will discuss some of the common algorithms for solving

the inverse problem.

2.6.1.1 Searching for the optimum value

There are many optimisation algorithms that have been developed, which can be divided into sub-

classes, such as linear/nonlinear programming, continuous/integer optimisations, convex/non-convex

programming, etc. For the problems of interest in this thesis, we look for nonlinear, continuous,

non-convex iterative optimisation methods; also, usually the derivative of our objective functions

(either the error measure or the likelihood function) does not have a closed-form expression, although

can be approximated by numerical methods such as finite differences.

6This is a very rough guide to the computational time needed, it heavily depends on the type of protocol, parameters,
etc. that is being simulated as well as the machine being used. The bottom line is that it does not take milliseconds or
hours to compute.

7Say if we want 10 grid per parameters for eight parameters taking 1 s per evaluation, it would take us 108 s, i.e. about
3.171 years to complete one search — just about the time needed to complete a D.Phil. degree at Oxford.
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Figure 2.7: An illustration of the differences between a local optimum and a global optimum. The grey regions
are outside the parameter space Θ, which are often called the boundary constraints in optimisation problems.

From a practical point of view, we divide the methods into local and global methods. A local

optimisation in a minimisation problem seeks a point θ∗ such that

g(θ∗) ≤ g(θ) for all θ ∈ Θ near θ∗. (2.42)

A global minimisation searches for a point θ∗ such that

g(θ∗) ≤ g(θ) for all θ ∈ Θ. (2.43)

Figure 2.7 illustrates the difference between the two types of optimum. Often we are interested in

looking for the global optimum instead of a local one, however global optimisation is much harder

and one of the challenges is determining whether the current best solution is a local or a global

optimum.

One of the most simple iterative local optimisation algorithms is gradient descent invented by

Augustin-Louis Cauchy in 1847 (Cauchy, 1847). This method suggests to take iterative steps

proportional to the negative (or positive for maximisation) of the gradient (or derivative) of the

objective function at the current point, until the next step is smaller than certain predetermined

threshold. There are many other local (or convex) optimisation algorithms, such as line search

algorithm, conjugate gradient methods, quasi-Newton method, etc. For further detail of the algorithms

and convergence proof, see e.g. Kelley (1999); Boyd and Vandenberghe (2004); Andreasson et al.

(2020). However, these traditional methods for local optimisation problems are not the best option

for our problems.

In recent years, a number of nature-inspired optimisation techniques (or rather metaheuristics) have

been developed to search for global optima. One example is the Genetic Algorithm which has been

widely used in the field of cardiac modelling. The algorithm adapts the principle of Darwinian theory

of survival of the best individual in the population through evolution operators such as selection,

crossover, mutation, etc. However, Genetic Algorithms usually reach only close to the global
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optimum but do not actually find the solution (Deb, 2000). Another famous example is the particle

swarm algorithm first developed by Kennedy and Eberhart (1995). The algorithm is inspired by

social and cooperative behaviour displayed by different species to widely explore the search space

(Wang et al., 2018).

Another class of nature-inspired optimisation techniques is Evolution Strategies. Evolution Strategies

are stochastic, derivative-free methods for non-linear, non-convex, continuous optimisation problems,

which suits our problems of interest. A variant of Evolution Strategy that has been used extensively in

the rest of the thesis is the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) by Hansen

(2006), as we found it to be particularly useful for our problems. In brief, the CMA-ES algorithm

aims to find a multivariate Gaussian distributionN(m, η2C) over the search space that is centred near

an optimum. As the search proceeds, it (randomly) samples parameters from the current distribution

and ranks the samples based on the objective function g, which in turn updates the multivariate

Gaussian distribution (the mean m, the covariance matrix C and the learning rate η) by giving higher

weights to the samples with higher ranking. Akimoto et al. (2010) has shown that CMA-ES is closely

related to one of the Natural Evolution Strategies (NES), the exponential (x)NES; for a review of the

NES family of algorithms please refer to Wierstra et al. (2014). The theory of CMA-ES has yet to be

fully understood. Akimoto et al. (2012) attempted to use an Information-Geometric Optimisation

(IGO) framework (Ollivier et al., 2017) to explain the algorithm but only for a simplified version

of the algorithm which does not provide the same performance as the original algorithm; for detail,

please refer to Massenet (2019), a Masters thesis that I co-supervised.

2.6.1.2 Approximating the posterior distribution

As discussed in the beginning of this section, often we do not have a closed-form expression for

the posterior distribution in Eq. (2.35); we therefore need methods to approximate the posterior

distribution. Given the complexity of cellular electrophysiology models, no brute force method is

feasible to approximate the posterior distribution (and its summaries). We therefore estimate these

posterior distribution (and its summaries), indirectly, through sampling.

By drawing samples from the posterior distribution, we can learn many about its properties. For

example, we can evaluate E(θ | Y) in Eq. (2.38) by drawing samples of θi, i = 1, . . . , n, from the

posterior p(θ | Y) and then approximating

E(θ | Y) =
∫

Θ

p(θ | Y)θ dθ ≈
1
n

n∑
i=1

θi. (2.44)

That is, the posterior mean of θ is estimated by a sample mean. Ideally, we would like to draw

independent samples from the posterior, however, this is not possible for our problems of interest.

We therefore turn to dependent sampling methods.

One of the most widely used dependent sampling methods in computational Bayesian inference is

Markov Chain Monte Carlo (MCMC)8, first invented for use in physics in the mid twentieth century.

As the name of the method family suggests, MCMC results in correlated consecutive samples, hence

8MCMC is named for generating a ‘Markovian’ (dependent) sequence of random variables.
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we need more dependent samples than would be obtained independently. The difference in sampling

efficiency between the two can be quantified by the effective sample size, see e.g. Gelman et al.

(2013). We briefly introduce the concept of MCMC below that is used extensively in the rest of this

thesis.

The essence of MCMC is that by starting the Markov chains at some random points θ0 in the

parameter space, and repeatedly stepping from θi to θi+1 with a transition operator (also called the

transition kernel, or transition probability) T (θi+1 | θi), the distribution of sampled values converges

to a stationary distribution — in our case, the posterior distribution. The design of a MCMC

algorithm is effectively to pick a transition operator that guarantees convergence of the distribution

of sampled values to the stationary (target) distribution. Note that although the MCMC algorithm

theoretically guarantees convergence, with a finite number of samples, the resulting distribution may

not be converged (or well-mixed). One way of checking the convergence is using the Gelman-Rubin

convergence statistic, often denoted as R̂, which compares variance in samples within and across

multiple chains, for more details see Gelman et al. (2013).

A sufficient but not necessary condition for the existence of a stationary distribution is detailed

balance (Robert and Casella, 2004), which requires that each transition θi to θi+1 is reversible. The

Metropolis-Hastings algorithm, one of the very well-known MCMC methods, designs the transition

operator T (θi+1 | θi) based on detailed balance9. The algorithm breaks the transition into two steps:

a proposing step and an accept-or-reject step. For each transition from the current sample θi, it first

proposes the next sample θi+1 based on some proposal distribution q(θi+1 | θi), it then calculates the

acceptance probability of the proposed sample based on

Pr(accept | θi+1, θi) = min
(
1,

p(θi+1 | Y)
p(θi | Y)

q(θi | θi+1)

q(θi+1 | θi)

)
. (2.45)

Here p(θ | Y) is our posterior distribution, although the algorithm guarantees convergence for any

arbitrary (stationary) distribution. Note that only the ratio of the posterior distribution is required (i.e.

only Eq. (2.36) is needed), therefore this saves us from calculating the proportionality constant —

the marginal likelihood denominator. Also, if the proposal function is symmetric, the second ratio

term cancels; this is a special case known as the Metropolis algorithm. For more details, see Robert

and Casella (2004).

In the rest of the thesis, we make heavy use of a variant of the Metropolis-Hastings algorithm, the

Adaptive-Covariance Metropolis algorithm (Johnstone et al., 2016b; Haario et al., 2001). Here it

uses a multivariate Gaussian distribution as the proposal distribution: θi+1 ∼ N(θi, λΣ). One of

the obvious issues with the Metropolis-Hastings algorithm is that if the proposal distribution is

picked inappropriately, the chance of accepting the proposed sample will be very low, and hence the

algorithm will not be able to move forward. The Adaptive-Covariance Metropolis algorithm tries

to overcome this issue by self-adjusting the covariance of the proposal distribution (the rate λ and

the covariance matrix Σ) such that it can accept the proposed sample at certain prefixed rate. This

9Another condition that is needed is the uniqueness of stationary distribution which is guaranteed by ergodicity of the
Markov process.
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algorithm shows a strong link to the CMA-ES optimisation algorithm, and we found both of these

algorithms are particularly useful for our problems.

For a more detailed explanation, see e.g. Robert and Casella (2004); Gelman et al. (2013); or a more

accessible introduction, see e.g. Lambert (2018).

2.7 VVUQ: verification, validation, and
uncertainty quantification

Since mathematical modelling and computational simulations are proposed as part of the future

cardiac safety testing pipeline by the CiPA initiative (see Section 2.2.2), their accuracy and robustness

must be thoroughly investigated and critically assessed. This leads to the ideas of verification and

validation (VV) of computational simulations, which are generally defined in Section 2.7.1. Moreover,

the current cardiac electrophysiology models produce a fixed prediction, as model parameters are

generally assigned a fixed value; conversely, experimental recordings from real cardiac cells or

other heterologous expression systems exhibit variability, including variability from one cell to

another, known as cell-to-cell variability or population variability. The sources of uncertainty and

how they are handled in the rest of this thesis are described in Section 2.7.2. Consideration of

uncertainties in experimental data allows propagation of these uncertainties into model predictions,

which leads to the study of uncertainty quantification (UQ). This is important for preclinical drug

development, as it allows a better assessment of cardiac safety and enables a more efficient decision

making process. Therefore the whole framework requires verification, validation, and uncertainty

quantification (VVUQ). Finally, in Section 2.7.3, we review the current approaches and applications

of VVUQ in cardiac modelling.

2.7.1 Definitions

Verification and validation together form a good basis of assessing the accuracy of the computational

model. We adopt the definitions of verification and validation from Oberkampf et al. (2004):

“Verification: The process of determining that a model implementation accurately

represents the developer’s conceptual description of the model and the solution to the

model.”

“Validation: The process of determining the degree to which a model is an accurate

representation of the real world from the perspective of the intended uses of the model.”

The second half of this VVUQ paradigm is uncertainty quantification, which has become an indis-

pensable part in assessing the credibility of computational models. We define it as the following:

Uncertainty quantification: the process of determining the uncertainties and the impact

of uncertainties in the model inputs (e.g. parameters and initial conditions) on the model

outputs.
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This definition of UQ can be divided into two stages:

1. Uncertainty characterisation: the concerns about the uncertainty in the model inputs. This

process assigns probability distributions, or simple statistics such as means and variances, to

input parameters, instead of single values, to characterise the uncertainty.

2. Uncertainty propagation (or uncertainty analysis): the concerns about the uncertainty in the

model outputs. This process uses a probabilistic description to determine how uncertainty in

model inputs results in uncertainty in outputs.

Note that all stages in the VVUQ process are intertwined, for example UQ improves the ability to

perform validation while validation is needed after UQ. This VVUQ paradigm is widely used in many

safety-critical applications, such as in the field of automotive, aerospace, nuclear, and structural engi-

neering, as it forms a set of methodologies and frameworks for assessing the reliability and robustness

of model predictions (Oberkampf and Roy, 2010; National Research Council, 2012). However, such

a VVUQ framework has not been commonly employed or adapted in cardiac electrophysiology

modelling, see Section 2.7.3.

2.7.2 Sources of uncertainty in cardiac modelling

The significance of UQ is clear because there are several potential sources of uncertainty in cardiac

modelling. Here we discuss the sources of uncertainty described in Vernon et al. (2010) and Mirams

et al. (2016) and how we handle them in this thesis:

Intrinsic variability is the temporal variability within the same cell that is caused by seemingly-

random processes. For example, contributions from the stochastic opening of ion channels

discussed in Section 2.3.2.5. In the rest of the thesis, we assume no stochastic processes in

the macroscopic current.

Extrinsic variability refers to the variability across different cells of the same type. It is thought

to be caused by quantities that generally vary from cell to cell, for example cell size or

ion channel expression. We attempt to quantify this variability in Chapter 4 to Chapter 6.

Extrinsic variability together with intrinsic variability are considered to be the residual

variability.

Observational uncertainty addresses the uncertainty in experimental data, which includes measure-

ment errors and lack of information. Measurement errors account for the errors from

instrument noise or the patch clamp recordings, for example voltage artefacts or capaci-

tance artefacts, this is investigated in detail in Chapter 6. Also, the uncertainty arising from

the fact that typically only the total (or a mix of) ionic current is recorded (as mentioned in

Section 2.4), represents lack of information.

Parameter uncertainty describes the uncertainty in model parameters. This can be contributed to by

both the residual variability and observational uncertainty. In particular, lack of information

can be one of the biggest issues, as cardiac electrophysiology models tend to combine

different experimental results into one big model (Niederer et al., 2009). In this thesis,
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Observational uncertainty Residual variability:
Intrinsic and extrinsic variability

Input uncertainty

Parameter uncertainty Condition uncertainty Uncertainty in more
complex inputs

Simulator uncertainty Structural uncertainty

Output uncertainty

Figure 2.8: An overview of the hierarchy of the sources of uncertainty. From experiments to model input
uncertainty, and how it is related to the output uncertainty. This hierarchy shows the how uncertainties
propagate and where the interest of UQ lies. The dotted arrows show how the uncertainty in the model output
can influence model calibration or learning of the model. Figure adapted from Mirams et al. (2016).

we therefore aim to build cell-specific models with a Bayesian approach to minimise and

quantify such uncertainty.

Condition uncertainty accounts for the initial or boundary condition uncertainty. For example, in

this thesis, initial conditions of the intracellular and extracellular ion concentrations and ion

channel states are set by running the model into a steady state. However, we note that this

might not represent the reality in the experimental setting, particularly for bigger models

such as whole-cell action potential models.

Structural uncertainty (also known as model discrepancy or model error) represents the difference

between a model and reality, i.e. the real physical system that it represents. An ion

channel model approximates the biophysical dynamics of a population of proteins in a cell

membrane, which may not be exact and the difference is accounted for by this structural

uncertainty. This is studied and reviewed in Lei et al. (2020c), a recent publication that I

led. We also study the consequences of this structural uncertainty in Chapter 7.

Simulator uncertainty deals with the errors associated with the approximation to the true solution

of the mathematical model. This can be numerical errors introduced by for example

discretisation in numerical methods, or errors from use of a surrogate model, for example

an emulator, which approximates the outputs of a computational model that is expensive

to solve. We do not use any surrogate model in this thesis, and this uncertainty has been

studied in detail by for example Cooper et al. (2015) and Clerx et al. (2016), as discussed

in Section 2.5.3.

Figure 2.8 shows the hierarchy of the sources of uncertainty, and how these contribute to input

uncertainty and relate to output uncertainty. In practice, it can be difficult to isolate these sources of

uncertainty. All of these can lead to a parameter identifiability issue, of which there are two types

(Bellman and Åström, 1970; Raue et al., 2009; Villaverde et al., 2016), as defined below:

34



Chapter 2

1. Structural identifiability refers to the well-posedness of the inverse problem for the parameters

of a model, that is, whether the parameters of the model can be identified through its outputs or

not. This depends on the model formulation. For example, let y = xab, where y is measurable

(model output), x is a control variable, and a, b are parameters. The product ab can be identified

but not a and b separately.

2. Practical identifiability refers to the possibility of determining the parameter values, with

quantification of the uncertainty, when all sources of uncertainty are taken into account. This

can be thought as an extension of structural identifiability, and allows consideration of the

limitations caused by the quality or availability of experimental data.

2.7.3 Examples of VVUQ in cardiac electrophysiology modelling

This VVUQ approach has not been widely used in cardiac electrophysiology modelling until recently,

as these models were not used in, or designed for, safety-critical applications such as cardiac

safety assessment. However, since these models are now being used as part of clinical applications

(Trayanova et al., 2012) and the drug safety assessment process (Mirams et al., 2014), which are

safety-critical, it is important to also consider the confidence in or credibility of the model outputs

(Li et al., 2020). Consequently, the application of VVUQ in cardiac electrophysiology modelling has

become of interest (Geneser et al., 2007; Elkins et al., 2013; Pathmanathan and Gray, 2013, 2014;

Pathmanathan et al., 2015; Johnstone et al., 2017, 2016a,b; Chang et al., 2017; Beattie et al., 2018).

Pathmanathan et al. (2015) is the first, to our knowledge, to perform formal UQ of the steady-

state inactivation of the fast sodium current (INa). To study the inactivation dynamics of the INa,

conventionally, the current-voltage relations are plotted (see Section 2.4) and a sigmoid function is

fitted to the average of multiple recordings which then gives a set of ‘best fit’ parameters, termed

as the ‘population-averaged’ approach. In Pathmanathan et al. (2015), the performance of this

conventional population-averaged approach, and an ‘individual-based’ statistical method (non-linear

mixed effects modelling) which also quantified the variation across cells, were compared, with a

conclusion stating that the population-averaged approach “can fail to capture the behaviour of any

cell”.

Johnstone et al. (2016b) used a set of inference techniques within a Bayesian framework to quantify

the ion channel maximum conductances {gi} in different cardiac models. This allows a quantification

of uncertainties in cardiac action potential models and their conductance parameters, although

residual variability, lack of information in observational uncertainty (see e.g. Chapter 6), and

structural uncertainty (see e.g. Lei et al., 2020c, and Chapter 7) were not explicitly considered. Later,

Johnstone et al. (2016a) and Johnstone et al. (2017) considered a part of the residual variability

— extrinsic variability, where a hierarchical modelling technique was applied to synthetic action

potential data and ion channel screening dose-response data.

This thesis further contributes to the methods for VVUQ as well as studying some of the major

sources of uncertainty in cardiac cellular electrophysiology.
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2.8 Conclusion
Having now described the background biological/physiological, mathematical, experimental, phar-

macological, and statistical concepts that are concerned in the rest of this thesis, in the next chapter

we look at our first attempt to tailor hiPSC-CM cell-line specific models with a method using a

typical ideal kinetics assumption and conventional voltage-clamp protocols. The results of the next

chapter act as a benchmark for the performance of hiPSC-CM cell-line specific models using the

conventional methods; it also reveals the limitations of the methods which in turn motivates moving

forward to experimental design and uncertainty quantification in the subsequent chapters.

36



Chapter 3

Tailoring hiPSC-CM Models:
A Conventional Method

This chapter was published as: Lei, C. L., Wang, K., Clerx, M., Johnstone, R. H., Hortigon-
Vinagre, M. P., Zamora, V., Allan, A., Smith, G. L., Gavaghan, D. J., Mirams, G. R., and Polonchuk,
L. (2017a). Tailoring mathematical models to stem-cell derived cardiomyocyte lines can improve
predictions of drug-induced changes to their electrophysiology. Frontiers in Physiology, 8:986.

Contributions: I performed all the mathematical modelling, data analysis, and interpretation of

the results. Data were collected by the co-authors.

Overview:

This chapter presents an exploratory study of the reparameterisation of an existing cardiac action potential

mathematical model from the literature to a new set of experimental data collected in an automated high-

throughput system. In particular we apply this to human induced pluripotent stem cell-derived cardiomyocytes

(hiPSC-CMs), as they have applications in disease modelling, cell therapy, drug screening and personalised

medicine. Computational models can be used to interpret experimental findings in hiPSC-CMs, provide

mechanistic insights, and translate these findings to adult cardiomyocyte electrophysiology. Different cell lines

display different expression of ion channels, pumps and receptors, and show differences in electrophysiology.

In this chapter, we use a mathematical model based on hiPSC-CMs from Cellular Dynamic International (CDI,

iCell), and compare its predictions to novel experimental recordings made with the Axiogenesis Cor.4U line.

It is shown that tailoring this model to the specific cell line, even using limited data and a relatively simple

approach, leads to improved predictions of baseline behaviour and response to drugs.

Despite these improved predictions, this chapter also explores the limitations of a widely used approach

and a commonly made assumption. The experimental data were obtained using what are referred to in this

thesis as ‘conventional’/‘traditional’ protocols. A detailed description and rationale of these conventional

protocols is provided in Chapter 2; in brief, when designing the voltage-clamp experiments, following the
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approach developed by Hodgkin and Huxley (1952a) who proposed the first models of ionic currents, often

the experimental protocols involve long sections during which the ion channels are brought into a particular

steady state, before a brief interval during which a current is measured. Due to the long duration of such

protocols, it is impossible to apply them all in a single cell. The common assumption for re-fitting models to

new experimental data, as we made in this chapter, is that the kinetics of the currents were perfectly described

by a model created from previous experimental data, and only scaling the magnitudes of the currents is needed.

We learn the limitations of the conventional methods and this ‘perfect kinetics’ assumption when applied to

tailoring hiPSC-CM cell line models, which motivates us to develop novel information-rich experimental

designs for studying current kinetics in the next chapter.

3.1 Introduction
In Chapter 2, we discussed the importance of human induced pluripotent stem cell-derived car-

diomyocytes (hiPSC-CMs) as a promising alternative to human cardiomyocytes. Differentiation

of hiPSCs into cardiomyocytes is a relatively well-established methodology (Lian et al., 2013),

allowing hiPSC-CMs to be used in many different applications. In particular for drug screening and

discovery, hiPSC-CMs can be used to evaluate proarrhythmic risk; hiPSC-CMs can be used as in

vitro models that closely resemble human physiology and patient-specific conditions (Ebert et al.,

2012; Mathur et al., 2015; Avior et al., 2016). Such in vitro studies have become more important for

drug evaluation (Friedrichs et al., 2005; Pugsley, 2005; Lindgren et al., 2008; Giorgi et al., 2010) and

the use of hiPSC-CMs in drug safety pipelines has been proposed as part of the U.S. Food and Drug

Administration (FDA)-led Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative (Sager

et al., 2014; Ando et al., 2017).

However, as also discussed in Chapter 2, some care needs to be taken when interpreting the results of

experiments on hiPSC-CMs, as many differences between hiPSC-CMs and adult cardiomyocytes

still exist. For example, hiPSC-CMs have a smaller average cell size (Polak and Fijorek, 2012),

lack T-tubules (Lieu et al., 2009) and have lower contractile force (Rodriguez et al., 2014). Their

calcium handling machinery is underdeveloped, including changes to calcium-induced calcium

release, buffering in the sarcoplasmic reticulum and recycling of calcium by SERCA (Blazeski

et al., 2012; Sedan and Binah, 2011), although this is still under debate (Hwang et al., 2015). The

expression levels of some ion channel genes also show some important differences. We further

discuss the similarities and differences between hiPSC-CMs and adult cardiomyocytes for a few

major currents in turn.

Fast inward sodium current (INa). INa and its channels in hiPSC-CMs share similar properties

as those in adult cardiomyocytes (Ma et al., 2011). However, not only the expected NaV1.5 ion

channels that are native in cardiomyocytes but also neuronal NaV1.7 channels have been detected in

hiPSC-CMs (Moreau et al., 2017). Furthermore, modelling suggests that, due to the higher maximum

diastolic potential and possibly the contribution of the funny current If to the action potential upstroke,

the INa contribution to the upstroke is smaller than in adult cardiomyocytes (Jonsson et al., 2012;

Goodrow et al., 2018). Although heterogeneity in the upstroke velocity of the action potential in
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hiPSC-CMs has been observed (Pekkanen-Mattila et al., 2010), INa still plays a role in the conduction

of the activation wave across tissue (Riedel et al., 2014).

L-type calcium current (ICaL). The main properties of the ICaL in hiPSC-CMs are similar to

the ones in adult cardiomyocytes (Ma et al., 2011; Hwang et al., 2015). Although a degree of

heterogeneity in the ICaL current density has been observed: Ma et al. (2011) reported the current

density to be at approximately −17 pA/pF, which is slightly higher than adult cardiomyocytes;

whereas a lower peak ICaL values of around −4 pA/pF was observed in hESC-CMs (Sartiani et al.,

2007).

Inward rectifier current (IK1). IK1 shows noticeable differences between hiPSC-CMs and adult

cardiomyocytes; unlike adult cardiomyocytes, hiPSC-CMs have little IK1 (Ma et al., 2011; Doss

et al., 2012; van den Heuvel et al., 2014). Deficiency of IK1 causes a comparatively high maximum

diastolic potential in hiPSC-CMs, as it is largely responsible for maintaining the resting potential in

adult cardiomyocytes. Therefore, the action of other currents, for example the pacemaker current (If)

and T-type calcium current (ICaT), may result in spontaneous depolarisation in these hiPSC-CMs.

The lack of IK1 indicates the immaturity of the hiPSC-CMs (Sartiani et al., 2007). To obtain a

more adult-like electrophysiological response, attempts have been made to increase IK1 density

by promoting the production of the Kir2.1 ion channel protein (Lieu et al., 2013; Vaidyanathan

et al., 2016), which is the IK1 channel protein, and by externally injecting simulated IK1 through the

dynamic clamp technique (Bett et al., 2013; Verkerk et al., 2017).

Rapid activating delayed rectifier potassium current (IKr). The IKr observed in hiPSC-CMs is

similar to that in adult cardiomyocytes, both in terms of the current density and activation kinetics

of the channel (Ma et al., 2011). IKr has been observed in the majority of the hiPSC-CMs (Jiang

et al., 2010; Honda et al., 2011; Ma et al., 2011; Doss et al., 2012). Given the low density of IK1, IKr

in hiPSC-CMs has been suspected to be involved in setting the maximum diastolic potential (Doss

et al., 2012), which is not the case in adult cardiomyocytes.

Pacemaker (funny) current (If). The spontaneous depolarisation of hiPSC-CMs, and hence their

spontaneous contraction (Ren et al., 2011; Elliott et al., 2011; Karakikes et al., 2014), is thought to be

due to the presence of a strong If after repolarisation (Ma et al., 2011). Unlike adult cardiomyocytes,

If does not appear in atrial and ventricular cardiomyocytes but only in pacemaker cells in sinoatrial

and atrioventricular nodes. The activation of If can be affected by cyclic-AMP, by co-location of

HCN4-Cav3 (Bosman et al., 2013), which is a funny current channel protein gene and Caveolin-3,

and by the relative proportion of the other HCN isomers (Sartiani et al., 2007). However, the full

role of If is still under debate in the literature, since the spontaneous activity can also be induced via

the calcium clock (rhythmic spontaneous SR Ca2+ release) (Itzhaki et al., 2011b; Kim et al., 2015).

The NCX exchanger, ICaL, and ICaT may also play an important role here (Itzhaki et al., 2011b; Kim

et al., 2015).
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Other currents. The remaining currents are thought to contribute less to the action potential

than those described above. All of the other major types of ionic channels expressed in adult

cardiomyocytes have been detected in hiPSC-CMs; this includes the slow delayed rectifier current

IKs, the transient outward current Ito, and the T-type calcium current ICaT (Jiang et al., 2010; Ma

et al., 2011). These currents were found to have similar properties to those in adult cardiomyocytes,

although Ito could not be separated into its fast and slow components (Ma et al., 2011). The pumps

and exchangers, including the Na+/K+pump, NCX exchanger, Na+/H+ exchanger, and Cl−/OH−

exchanger, have all been identified in hiPSC-CMs too, and were found to have similar kinetics as

their adult counterparts (Fine et al., 2013).

The need to further understand these sub-cellular differences and to translate findings in hiPSC-CMs

to adult myocytes, has driven studies to develop computational models of hiPSC-CMs as described

in Chapter 2.

Each hiPSC-CM cell line is developed from a donor with a particular genetic background, using a

specific set of protocols from differentiation to maturation. Besides the differences in hiPSC-CM

and adult cardiomyocyte electrophysiology, differences between hiPSC-CM cell lines have also been

shown (Du et al., 2015; Priori et al., 2013; Moran et al., 2014; Okano et al., 2013). Cell-to-cell

variability of ion current characteristics within a single line of hiPSC-CMs was also observed (López-

Redondo et al., 2016) as in adult cardiomyocytes. This property can have strong implications for

our understanding of cell electrophysiology and prediction of drug effects (Mirams et al., 2016).

Computational modelling can be used to understand and to quantify this intra- and inter-cell line

variability, and to gain mechanistic insights into hiPSC-CM electrophysiology.

But how detailed does such modelling work need to be? Can a model based on one cell line be used

to make inferences about another? How much, and what type of experimental data is needed to tailor

a model to a new cell type, or even an individual cell?

In this chapter, we compare electrophysiological characteristics of the Cor.4U hiPSC-CM cell line

(Axiogenesis AG, Germany) to a model by Paci et al. (2013), based on the Ma et al. (2011) studies of

an hiPSC-CM cell line from CDI, iCell. First, we measured the maximum conductances of sodium,

calcium and lumped outward currents in individual Cor.4U cells, and by comparing this to model

predictions we attempted to infer the maximum conductances of the individual ionic currents. We

focused on the maximum conductances of INa, ICaL, IKs, INaCa. These maximum conductances

were then used to tailor the Paci et al. (2013) model to create cell-specific models of 22 different

Cor.4U cells. Using these tailored models to simulate action potentials, we found a variety of action

potential waveforms exhibiting a high level of variability similar to that found in real hiPSC-CMs.

We then optically measured action potential durations (APDs) in hiPSC-CM cultures under both

control and drug-applied conditions, and found that – in most cases – tailored models predicted the

resulting changes better than the original model. This suggests that the ion current composition

differs between cell lines, and highlights the need to tailor in silico models to different cell lines to

interpret drug-induced alterations to their electrophysiology. This chapter explores the limitations of

the conventional protocols and the assumption that only maximum conductances are needed to be

40

http://axiogenesis.com/products/cardiac-cells/cor-4u-hipsc-cardiomyocytes.html


Chapter 3

fitted, and hints that more intricate methods are needed to characterise the current kinetics as we do

in the next few chapters.

3.2 Methods

3.2.1 Current measurements in Cor.4U cells

Sodium, calcium, and lumped outward currents were measured in Cor.4U cells in the whole-cell

patch clamp configuration using the Nanion SyncroPatch 96 platform (Nanion Technologies GmbH,

Germany). The configuration of the automated patch-clamp setup is very similar to the one shown in

Figure 2.4B. Sodium and lumped outward currents were measured using an intracellular solution

containing (in mM) 50 KCl, 60 KF, 10 NaCl, 10 HEPES, and 20 EGTA (pH: 7.2), and a bath solution

containing (in mM) 150 NaCl, 4 KCl, 1 MgCl2, 1.2 CaCl2, 10 HEPES, and 5 glucose (pH: 7.4).

Calcium current recordings were made using an intracellular solution containing (in mM) 50 CsCl, 60

CsF, 10 TEA-Cl (a potassium current blocker), 5 HEPES, 10 EGTA, 4 Na2-ATP, 0.1 Na-GTP, and 0.1

cAMP (pH: 7.2) and a bath solution containing (in mM) 130 NMDG, 10 BaCl2, 4 CsCl2, 1 MgCl2, 2

CaCl2, 10 HEPES, and 5 glucose (pH: 7.4). All currents were recorded at room temperature.

For the sodium current measurements, cells were held at −80 mV and then stepped to potentials

ranging from −60 mV to 60 mV with 10 mV increments, before returning to the holding potential.

The step duration was 20 ms and the interval between steps was 5 s. The calcium current experiments

used a similar protocol, but with 200 ms steps from −40 mV to 40 mV. The outward current was

measured with 500 ms steps from −40 mV to 50 mV, with a 10 s interval between steps. All three

protocols are illustrated in Figure 3.1.

60mV

-60mV

-80mV

P1 20ms

40mV

-40mV

-80mV

P1 200ms

50mV

-40mV

-80mV

P1 500ms

Figure 3.1: Voltage protocols used for sodium, calcium and lumped outward current measurements (not to
scale). A 5 s waiting interval between pulses for sodium and calcium voltage protocols was used; with a 10 s
waiting interval between pulses for outward current voltage protocol.

For the outward current experiments, we fitted directly to the experimental current traces (see

Section 3.2.5). As discussed in Chapter 2, often during whole-cell patch clamp experiments, a

leak current to ground occurs, which is introduced to the measured current, whenever the seal

between a pipette and cell (or internal solution and cell in high-throughput machines) is not perfectly

insulated from the bath (extracellular) solution. Therefore a leak current correction at voltage V was

applied using Ileak = V/Rleak where Rleak was the leak resistance estimated at the holding potential.

Capacitance artefacts were filtered out by omitting the first 10 ms after each change in potential (see

e.g. Ogden and Stanfield, 1994).
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3.2.2 Patch clamp action potential measurements in hiPSC-CMs

Action potentials in iCell hiPSC-CMs (CDI, USA) plated on coverslips were measured in whole-

cell patch-clamp configuration using a HEKA amplifier (EPC 10 USB Triple, HEKA Elektronik,

Germany). Recordings were made using a pipette solution containing (in mM) 10 NaCl, 125 KCl,

1 MgCl2, 10 HEPES, 0.1 Na3GTP, 5 Mg-ATP, 5 EGTA (pH 7.2) and a bath solution containing

(in mM) 150 NaCl, 4 KCl, 1.2 CaCl2, 1 MgCl2, 10 HEPES (pH 7.4). Cells were stimulated at a

frequency of 1 Hz, for at least 50 cycles before recording.

3.2.3 Optical mapping action potential measurements in Cor.4U
cultures

Action potentials were recorded from Cor.4U cultures with optical mapping using the CellOPTIQ

electrophysiology platform (Clyde Biosciences Ltd). Cells were incubated in serum-free media at

(30 ± 2) ◦C, and transiently loaded with voltage sensitive fluorescent dye di-4-ANEPPS (20 µL of

stock solution 27 mM in ethanol; University of Connecticut Health Center). The loaded dye was

then excited with a peak wavelength 470 nm LED, and the emitted fluorescence from the Cor.4U

hiPSC-CMs was recorded at a sample frequency of 10 kHz. Measurements were performed before

and after addition of Dofetilide, Quinidine, Sotalol and Verapamil at the concentrations shown in

Table 3.1. Paracetamol was applied as a negative control.

A semi-automatic data analysis method based on the work of Wang et al. (2015) was employed to

normalise the data. In short, heuristics were used to form an initial estimate of the start and end

time of the action potential. The region just before the estimated upstroke was used to determine

Vnormalised = 0, while the 95th percentile of the data during the (estimated) action potential was used

as Vnormalised = 1. We then calculated the final APD90 and APD50 from this normalised signal, which

were defined as APDs at 90 % and 50 % repolarisation, respectively.

3.2.4 Simulated experiments

Simulations of the patch clamp protocols were carried out using the model by Paci et al. (2013)

that was described in Section 2.5.2.1. Initial intracellular and extracellular ion concentrations were

set to the values used in the experiments. For the INa, ICaL, and Ioutward voltage clamp experiments,

IC50 [µM] Dofetilide Quinidine Sotalol Verapamil

IKr 0.0052 a 0.3 b 111.4 d 0.25 d

INa 147.9 a 16.6 c 7013.9 d 32.5 d

ICaL 26.7 a 15.6 c 193.3 d 0.2 d

IKs 415.8 a no significant effect no significant effect no significant effect

x [µM] 0.03, 0.1, 0.3, 1.0 0.01, 0.1, 1.0, 10 0.3, 3.0, 30, 300 0.01, 0.1, 1.0, 10

Table 3.1: Summary of the applied reference drugs which are a variety of multi-channel blockers, including
the IC50 values for the corresponding ion channels, and the applied drug concentration (x). The IC50 data are
from (a) Obejero-Paz et al. (2015), (b) Po et al. (1999), (c) Mirams et al. (2011), and (d) Kramer et al. (2013).
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concentrations were clamped (corresponding to the buffering effects of the pipette), but for action po-

tential simulations concentrations were allowed to vary following model equations. The temperature

parameter in the model, which affects reversal potentials as well as ICaL permeability and IKr, INaK,

and INaCa kinetics, was set to 25 ◦C (298 K) to match the experimental temperature. Simulations

were performed as described in Chapter 2. All codes and data are freely available online, see Data

and Software Availability at the end of the chapter.

3.2.5 Estimating maximum conductances of individual ion currents

The maximum conductance of INa was estimated by scaling the INa conductance in the (Paci et al.,

2013) model to match the peak current recorded experimentally with the sodium protocol (n = 35

cells), based on the assumption that the peak current is composed of INa alone. We tested this

assumption by running a simulated experiment, where we observed that INa alone would reach 1.01×

the initial inward deflection after each voltage step. So the peak is almost entirely due to sodium and

only decreased slightly by the presence of other currents. Similarly, the recordings made with the

calcium protocol (n = 25 cells) were used to directly infer the maximum conductance of ICaL.

To estimate the conductances of the remaining major currents, we used the recordings made with

the outward-current protocol (n = 22 cells). Using the hiPSC-CM model by Paci et al. (2013), we

simulated the response to this protocol of INa, ICaL, IK1, IKr, IKs, Ito, If, and INaCa; see Figure 3.2.

We then tried to find a weighted sum of these simulated currents that could replicate the measured

signal. This was done by minimising the sum of square errors between measured and simulated

current during the voltage steps, using the global optimisation method Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) as described in Chapter 2. The procedure was repeated for each of the

22 measured cells, resulting in a unique set of scaling factors per cell.

While this protocol was intended to find values for only the outward currents (such as IKr, IKs, and

Ito) we chose to vary the inward currents INa and ICaL in the optimisation to reduce the risk that
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Figure 3.2: The major ionic currents in the (unaltered) Paci et al. (2013) model. All currents were elicited
by 500 ms steps from a holding potential of −80 mV to step potentials of −40 mV to 50 mV with 10 mV
increments (see Figure 3.1). Note that, because internal and external concentrations were held constant, INaCa,
INaK and INa,b show constant current at a given voltage.
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any inward currents in the signal would erroneously be attributed to the outward currents (see e.g.

Sarkar and Sobie, 2010). Note that we do not use these fitted INa and ICaL conductances because

we fit these from other dedicated experiments; they were included here just to yield more accurate

outward current fits. After finding that the most prominent outward currents were IKs and INaCa (see

Section 3.3.2), we ran a second optimisation with only IKs and INaCa: little change was observed,

but we expect that fitting outward currents together with INa and ICaL is likely to yield slightly more

accurate results.

Convergence of the optimisation results was verified by repeating the process ten times, using

different random seeds for each run. We found that the L2 norm of the difference between the first

and repeated scaling factor vectors was smaller than 10−5 for all 10 random starting points. To further

verify the identifiability of the problem, we performed the same analysis on synthetic data (with

synthetic noise), and were able to successfully infer the conductance scaling factors (see Figure 3.3

and Table 3.2). We note that this analysis assumes the kinetics of the currents have low model

discrepancy, i.e. reflect the kinetics of the real currents well; this assumption has been commonly

used, see e.g. Britton et al. (2013), Groenendaal et al. (2015), and Johnstone et al. (2016b). We further

discuss this limitation in Section 3.4.4 and revisit this assumption later in this thesis, in Chapter 7.
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Figure 3.3: Simulated transmembrane current during the outward protocol (see Figure 3.1), calculated from
the original (untailored) model. (Left) Without noise. (Right) With Gaussian noise of σ = 0.15 A/F.

Finally, to quantify the contribution of each current to the total outward current, we defined a

contribution score ci for each current Ii as

ci =
|Ifinal,i|∑
j |Ifinal, j|

, (3.1)

where Ifinal,i was defined as the current measured at the end of the final step of the outward-current

protocol. This measure simply gives us a sense of the proportion of outward current that is contributed

by each individual component during the end of the 50 mV step, but it is not used in tailoring the

models.

3.2.6 Predicting the shape of the action potential

Next, the estimated maximum conductances were used to tailor the Paci et al. (2013) model to individ-

ual cells from the Cor.4U cell line. A total of 22 model variants were parameterised, corresponding
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Without noise With Gaussian noise σ = 0.15 A/F

Currents scaling contribution scaling contribution

INa 1.00 0.00 1.00 0.00
ICaL 1.00 1.30 1.00 1.30
IK1 1.00 0.00 1.01 0.00
IKr 1.00 15.05 1.01 15.18
IKs 1.00 4.70 1.21 5.68
Ito 1.00 0.09 1.06 0.09
If 1.00 0.00 1.01 0.00
INaCa 1.00 78.86 0.99 77.74

Table 3.2: Synthetic data study. We tested whether our outward current experiment theoretically contains
enough information to retrieve the conductances that produced synthetic data from the original Paci et al.
(2013) model under our outward protocol (see Figure 3.1), with and without noise (also see Figure 3.3). The
scaling factors are taken with respect to the maximum conductance found in the original Paci et al. (2013)
model.

to the 22 cells for which the outward current was measured. Since we found many currents were not

discernible in the recorded outward current (see Table 3.3), we only applied the cell-specific scaling

factors for IKs and INaCa. All tailored models used the same INa and ICaL scaling factors, found in

the inward current experiments which were measured in different cells and hence any covariance

could not be accounted for. The remaining currents were left unchanged, as they are necessary for

other cellular behaviour, such as homeostasis, even though they might not contribute strongly to the

recorded outward current. Finally, Na+, K+, and Ca2+ evolve in time according to the Paci et al.

(2013) model, to mimic the intact cell conditions of our optical mapping experiments.

These tailored models were then used to simulate baseline action potentials, as well as action

potentials with drug perturbation. The effects of drugs on ion current maximum conductances were

modelled using the Hill equation (Hill, 1910; Weiss, 1997)

f (x) =
1

1 + (x/IC50)h , (3.2)

where x denotes the concentration of the applied drug, IC50 is the inhibitory concentration 50 %

value, h is the Hill coefficient, and f (x) is a scaling factor for the maximum conductance that varies

from 0 (full block) to 1 (no block).

For each cell and each drug, a model was created where the maximum conductances of the ion

currents were scaled according to Eq. (3.2) using the IC50 values from Table 3.1 and a Hill coefficient

of 1.0. For comparison, the same scaling factors were applied to an original model with the untailored

conductance values from Paci et al. (2013).

In our optical mapping experiments, cells formed a spontaneously-beating and electrotonically-

coupled monolayer. However, in this preparation not all cells beat at their spontaneous rates. Most

cells will fire an action potential when triggered by an activation wave from their neighbours rather

than spontaneously, and a relatively small region of (by definition) faster spontaneously-beating cells

sets the pacing rate for the entire monolayer. Therefore, to mimic this effect, we paced the cells by
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injecting a current of 5.6 A/F for 5 ms (Istim in Eq. (2.3)) at the mean rates observed in the optical

mapping experiments, for a given compound, to account for any action potential rate dependency.

We used the cycle lengths of 1.375 s for Dofetilide, 1.176 s for Quinidine, 0.933 s for Sotalol, 0.905 s

for Verapamil and 1.0 s for Paracetamol and all other experiments. To allow direct comparison with

the optical mapping data, the simulated action potential was normalised using the same algorithm

(see Section 3.2.3).

3.3 Results

3.3.1 INa and ICaL in Cor.4U cells

Figure 3.4 shows the peak current-voltage (I-V) relationships for INa and ICaL, measured in Cor.4U

cells. The mean peak current in 35 cells (INa) and 25 cells (ICaL) is plotted, as are the 25th and 75th

percentiles. Compared to the prediction of the original Paci et al. (2013) model (created from iCell

hiPSC-CM data), the experimental data show a lower amplitude of both currents in Cor.4U cells.

We had to scale by a factor 0.69 to match the mean peak INa, and 0.80 to match the mean peak ICaL

recordings. The simulated INa peaked at the same potential as the experimental data, suggesting

the activation kinetics of INa in iCell and Cor.4U cell lines are similar. The simulated ICaL kinetics

followed the Paci et al. (2013) model, and were left-shifted relative to experimental data. Further

experiments established that this shift was due to a right-shift in the experimental I-V curve due to

Ba2+ being present in the ICaL voltage clamp experiment bath solution as shown in Figure 3.5, hence

we do not adjust the kinetic terms and tailor only the maximum conductance.
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Figure 3.4: Current-voltage (I-V) relationship for INa (left) and ICaL (right). The red lines represent the mean
peak current measured experimentally in 35 (INa) and 25 cells (ICaL), and the shaded areas show the 25th and
75th percentiles of the experimental data. The peak-current voltage relation simulated with the unaltered Paci
et al. (2013) model for the same protocol is shown in blue. The orange lines show the simulated results after
scaling to match the maximum current.

3.3.2 The outward protocol strongly elicits IKs

Figure 3.6 (left panel) shows the current measured with the outward-current protocol in a single

Cor.4U cell. To analyse the composition of this current, we simulated the same protocol, and looked
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Figure 3.5: Normalised ICaL I-V relationship, measured with Ca2+, Ba2+, and Ca2+/Ba2+ solutions. Mean
peak currents were −3.1 A/F (Ca2+ only, n = 8), −2.7 A/F (Ca2+/Ba2+, n = 3), and −4.5 A/F (Ba2+,
n = 3). The main experiments used in the this chapter were performed using a Ca2+/Ba2+ mix, which
can cause a shift in the kinetics towards more positive potentials. Since we used this data only to capture a
scaling coefficient, this shift was not included in our tailored models. However, due to potential between-batch
variability in hiPSC-CM, it was crucial that we performed all experiments in the same batch of cells, and so
calcium-only data here (recorded later in a different batch of cells) could not be used.

for a sum of scaled transmembrane currents from the Paci et al. (2013) model that gave a similar

result (see Section 3.2.5). We repeated this process for each of the 22 cells with measured outward

current, and obtained the scaling factors s for each cell and current shown in Table 3.3. Note that the

scaling factors s are relative to the original Paci et al. (2013) model. In many cases, the optimisation

routine indicated that the kinetic profile of certain currents was not discernible in the measured

outward current. This is indicated in the table with a dash (—) for any scaling factor smaller than

than 10−10. After seeing these results, as a comparison, we also tried fitting by varying only IKs

and INaCa (and using the scaling factors for INa and ICaL determined previously), and the results are

similar as shown in Table 3.4.

For most cells, we found that the measured responses differed greatly, in both the shape and size of

the currents, from the original model predictions (see Figure 3.3), leading to a poor quality of fit (see

Figure 3.6 bottom). As a result, the best reconstructions of the simulated current relied almost entirely

on a greatly amplified IKs current, along with a strong INaCacurrent, while other currents such as IKr

and If were notably absent. Based on this, we might assume that IKs and INaCa are more strongly

expressed in Cor.4U cells than in the iCell cells the Paci et al. (2013) model was based on. As an

initial verification of these findings, we repeated some outward current measurements in the presence

of Chromanol (an IKs blocker), see Figure 3.7 for an example where IKs is indeed significant. The

near-zero contributions of other currents (e.g., IKr) does not imply that these currents are completely

absent in Cor.4U cells, but instead suggests that the currents as simulated from the model could not

be found in our recordings using the specified patch clamp protocol. This is a strong hint that changes

to the kinetics of the currents will be required to accurately simulate the ion currents in Cor.4U cells

at this temperature using the model by Paci et al. (2013). Such a mismatch in kinetics would also

explain the large remaining errors between measurements and fit seen in Figure 3.6 (bottom), causing

other currents, such as IKr, to be fitted as absent. This is discussed further in Section 3.4.4.
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Figure 3.6: (Left) Experimentally measured outward current in cells #19 (top) and #20 (bottom) during the
outward protocol. Data to the left of the vertical red (10 ms) was omitted to remove capacitance artefacts.
(Right) Simulated transmembrane current during the same protocol, as set during the optimisation process
for cells #19 and #20. Note that this figure includes all scaling factors set by the optimisation routine (see
Section 3.2.5), including ones not included in the final tailored models (such as INa and IKr).

Figure 3.7: Recording of the transmembrane current of Cor.4U cell using the outward current protocol (see
Figure 3.1). (Left) control conditions. (Middle) after drug application of 100 µM Chromanol (an IKs blocker).
(Right) the difference in the traces which represents the Chromanol-sensitive current (predominantly IKs). The
contribution score c for the measured IKs, calculated using Eq. (3.1) (i.e. ratio of the indicated red markers), is
69.2, which is indeed comparable to the averaged contribution score of the 22 tailored models 56.3 ± 20.8
(mean and standard deviation of the column c under IKs in Table 3.3).

3.3.3 Tailored models

We then created tailored models by modifying the original Paci et al. (2013) model in two ways:

First, we scaled the maximum conductances of INa and ICaL by a factor 0.69 and 0.8, respectively, to
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INaCa IKs IKr IK1 If

Cell s c s c s c s c s c

1 3.32 28.5 139 71.2 — — — — — —
2 2.08 21.2 129 78.5 — — — — — —
3 7.55 50.3 125 49.5 — — — — — —
4 21.1 43 467 56.8 — — — — — —
5 6.89 29.9 270 70 — — — — 1.18 —
6 9.3 42.4 211 57.4 — — — — — —
7 0.951 29.6 37.6 69.9 — — — — — —
8 1.54 56.7 19.5 42.8 — — 0.118 0.000258 — —
9 1.7 35.2 52 64.3 — — — — — —
10 1.67 98.6 — — — — 0.104 0.000362 — —
11 0.38 16.7 31.5 82.5 — — — — — —
12 0.696 38.2 18.6 60.9 — — — — — —
13 3.05 25 153 74.7 — — — — — —
14 1.28 14.7 125 84.9 — — — — — —
15 1.19 34.1 38.3 65.3 — — — — — —
16 3.02 51.4 47.3 48 — — — — — —
17 2.35 59 27 40.4 — — — — — —
18 4.03 32.7 138 66.9 — — — — — —
19 5.74 73.4 28.9 22 1.84 4.5 0.513 0.000388 — —
20 2.35 80.5 9.18 18.8 — — 1.18 0.0024 — —
21 3.77 40.2 93.7 59.6 — — — — — —
22 13.9 44.6 288 55.1 — — — — — —

Table 3.3: The scaling factors (s) and the relative contribution (c) of individual ion currents to the measured
outward current in Cor.4U cells (n = 22). Values lower than 10−10 are shown as dashes (—). The scaling
factors are taken with respect to the maximum conductance found in the original Paci et al. (2013) model. Ito

values were lower than 10−10 for all cells. Because of the many low values for Ito, IKr, IK1, and If, only the
values for INaCa and IKs were used to create the tailored models.

match the averaged data from the inward current experiments. We then further modified this model to

create 22 tailored models based on the 22 cells in which outward current was measured, by applying

the IKs and INaCa scaling factors from Table 3.3.

3.3.4 Variability in Ioutward predicts variability in action potential

Significant variability in the outward currents was observed among the Cor.4U cells. This can be seen

from the scaling factors in Table 3.3, but it is also evident when inspecting peak Ioutward in Figure 3.8.

Figure 3.9 (left panel) shows action potentials simulated with the tailored models. A wide variety

of action potentials could be seen, with some models showing a spike-and-dome waveform, some

showing a more triangular waveform, and with a varying slope in resting potential (leading to different

degrees of auto-excitation). Some models also show beat-to-beat alternans, or fail to completely

depolarise. The corresponding contribution of the major currents throughout the action potentials are

also shown in Figure 3.10.

Recordings of action potentials in single hiPSC-CMs show a similar variety of action potential
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INaCa IKs INaCa IKs

Cell s s f ix s s f ix Cell s s f ix s s f ix

1 3.32 2.08 139 163 12 0.696 0.338 18.6 19.6
2 2.08 1.19 129 144 13 3.05 1.93 153 174
3 7.55 6.04 125 156 14 1.28 — 125 150
4 21.1 16.8 467 571 15 1.19 0.621 38.3 44.9
5 6.89 6.15 270 281 16 3.02 1.68 47.3 74.2
6 9.3 7.3 211 255 17 2.35 1.73 27 35
7 0.951 0.58 37.6 38.9 18 4.03 1.86 138 187
8 1.54 1.28 19.5 18 19 5.74 6.44 28.9 16.2
9 1.7 0.958 52 63 20 2.35 1.93 9.18 13.3
10 1.67 1.06 — 6.89 21 3.77 3.12 93.7 102
11 0.38 0.0124 31.5 32.7 22 13.9 10.3 288 375

Table 3.4: The scaling factors (s) in Table 3.3 compared with the scaling factors (s f ix) which we only varied
IKs and INaCa (and using the scaling factors for INa and ICaL determined in previously), for IKs and INaCa. The
scaling factors are taken with respect to the maximum conductance found in the original Paci et al. (2013)
model. As shown, the scaling factors when varying only IKs and INaCa conductance are similar to those found
when varying multiple currents.
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Figure 3.8: The distribution of peak outward currents in 22 cells. The current values are in A/F, showing the
variability of the outward currents in terms of the current density.

waveforms. Figure 3.9 (right panel) shows action potentials measured in seven different iCell hiPSC-

CMs. Again, various waveform morphologies (roughly corresponding to atrial, ventricular and

sinoatrial node action potentials) and differing levels of auto-excitability can be distinguished. Whilst

these recordings are for a different cell line than our tailored models, the inter-cell variability in

channel expression within a batch of hiPSC-CMs has not been observed to be markedly different

between cell lines (see e.g. the relative size of the ‘error bars’ in Figure 2 of Blinova et al., 2017).

3.3.5 Tailored models improve predictions of APD

Figure 3.11 (left panel) shows the median of all simulated traces as shown in Figure 3.9, along with

the 25th and 75th percentiles. The optically recorded action potentials from the Cor.4U cells were

plotted on the same graph (the median shown as black line and the 25th and 75th percentiles shown as

grey shading). Due to the increased outward current, the tailored models exhibit a shorter APD than
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Figure 3.9: Predicted variability in the tailored action potential models is similar to inter-cell variability in
a batch of hiPSC-CMs. (Left) Simulated action potentials from the 22 tailored cell-specific Cor.4U models
exhibit a variety of action potential waveforms. (Right) Experimentally measured action potentials in seven
individual iCell hiPSC-CMs also show significant variability.
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Figure 3.10: The corresponding contribution of the modified currents INa, ICaL, IKs and INaCa, along with IKr,
throughout the simulated action potentials for the 22 cells. Note that even IKr was not modified, because of the
feedback of the membrane potential and ionic concentrations, it exhibits variability throughout the 22 cells.

the original model, that matches the measured APDs more closely in the early and late repolarisation

phase. A histogram of APDs in measured and simulated cells is shown in Figure 3.11 (right panel),

with the blue line representing the result from the original model.

3.3.6 Tailored models can give better prediction of drug block effects

Figure 3.12 shows the dose-response curves of the APD90 of four drugs, measured experimentally

and simulated using the original and tailored models. Results for the control drug paracetamol show

that the APD90 remains unchanged in the dose-response curves. For all four drugs tested, although

not fitting the experimental data exactly, the tailored models match the measured data more closely

than the original model. For Dofetilide in particular, the tailored models show a realistically smaller

increase in APD than the original model, which shows alternans and then repolarisation failure

at higher drug concentrations. For Quinidine, although the tailored models do not fit better at the

highest concentration, we improve the predictions at lower concentrations.
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Figure 3.11: (Left) The predicted 1 Hz steady pacing action potentials from the individual cell optimised
models (orange), the original Paci et al. (2013) model (dashed blue), and optical mapping measurements (black)
in the control conditions. We show the median and 25th and 75th percentiles of the optical mapping (grey) and
action potential models (orange). All data shown are normalised (see Section 3.2.3). For models that exhibited
strong alternans (i.e. where only every second action potential showed a spike-and-dome morphology) the
longer of the two action potentials was used. (Right) A histogram of APD90 in the fitted models and optical
mapping control (drug free) experiments. As we might expect, there is more variation in APD in the individual-
cell tailored action potential models than the electrotonically-coupled tissue measurements, but the distribution
is centred appropriately.

Predictions made with the adult cardiomyocyte model by O’Hara et al. (2011) are shown for

comparison. Note how the adult cardiomyocyte model predicts APD prolongation with Verapamil,

whereas both the tailored and original hiPSC-CM models accurately predict the shortening that is

observed in hiPSC-CM optical mapping. Such qualitative differences highlight the need for models

specific to hiPSC-CMs to interpret experimental findings in these cells.

3.4 Discussion
In this chapter, we reparameterised a mathematical model of hiPSC-CMs based on the iCell cells

to a new set of Cor.4U hiPSC-CM experiments measured using conventional methods. Using the

simple method of scaling maximum conductances — without altering ion current kinetics — we

created models tailored to individual hiPSC-CMs. The obtained fits had a high root-mean-square

error (RMSE), which suggests that the ion current kinetics in the iCell-based model by Paci et al.

(2013) do not closely match those in Cor.4U cells, as further discussed in Section 3.4.4.

However, like real hiPSC-CMs, these tailored models show differences in action potential from cell

to cell, with action potential waveforms broadly similar to ventricular, atrial and sinoatrial-node

action potentials. The predicted single-cell APD90 was shorter in tailored models than in the original

model, and showed a better match with optical mapping measurements in electrotonically-coupled

hiPSC-CM cultures. The effects of Dofetilide, Quinidine, Sotalol and Verapamil on the APD

were simulated, and again the tailored models provided a closer fit. These results show that there

are electrophysiological differences between hiPSC-CM cell lines, and that simple adjustments to

computational hiPSC-CM models can already partially accommodate them.
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Figure 3.12: Dose-response curves of the APD90 for four drugs: Dofetilide, Quinidine, Sotalol, and Verapamil.
The individual optical mapping measurements are shown as black dots, with the median shown as a dotted
black line. Predicted responses from the original model are shown in blue, and the tailored model predictions
are shown in orange (solid line is median and shaded region indicates 25th–75th percentiles. Models (tailored
or original) that exhibited strong alternans (i.e. where only every second action potential showed a spike-
and-dome morphology) were omitted from the figure. Because this caused the number of predictions in the
tailored model distribution to vary, the minimum and maximum number of predictions per drug is shown as
n = minimum −maximum. At higher concentrations, Dofetilide block causes repolarisation failure in both
the original model and the O’Hara model.

In this section we first discuss the implications of this exploratory study in turn. Then we discuss

the limitations and lessons learnt at the end of this section, to accentuate the drawback of using

conventional methods, and to motivate the rest of the studies in this thesis.

3.4.1 Cell-line differences in ion current densities

We obtained maximum conductance values for the inward currents INa and ICaL that are lower than

suggested by the Paci et al. (2013) model based on iCell cells, while IKs and INaCa were increased

in most Cor.4U cells. The slight reduction in ICaL and increase in IKs suggests a decrease in APD.

This was borne out by the action potential simulations, and was consistent with our optical mapping

measurements which showed shorter APDs compared to the action potential simulated by the original

Paci et al. (2013) model. Our simulations displayed a similar degree of action potential variability to

the experimental hiPSC-CM recordings, but larger variability than the optical mapping measurements.
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Both findings are consistent given that electrotonic coupling of cells (present in the optical mapping

experiments) reduces variability.

A potential explanation of the large IKs current is suggested by Lei et al. (2017b). It shows that both

the KCNQ1 and KCNE1 (subunits of the channel carrying IKs) were present in the Cor.4U cells,

however, KCNE1 was not as well expressed in iCells. The difference in KCNE1 expression could

lead to the observed larger IKs currents in the Cor.4U cells compared to iCells, and hence a shorter

APD and less prolongation under IKr blockers, which is in agreement with Blinova et al. (2017).

Our observation is supported by Silva and Rudy (2005) who found that native IKs (from channels

comprised of both KCNQ1 and KCNE1) activates more than with KCNQ1 only.

3.4.2 Cell-to-cell differences in hiPSC-CMs

HiPSC-CMs, from the same donor and differentiated/matured in the same way, can display vastly

different action potential waveforms, reminiscent of those of ventricular, atrial, and sinoatrial-node

cells. Our tailored models, created by varying the maximum conductances of INaCa and IKs, showed

a similar model-to-model (cell-to-cell) variety in style of generated action potentials. This shows that

variation in genetic expression, which correlates directly with maximum conductance (Schulz et al.,

2006), could be enough to explain the different action potential waveforms observed in hiPSC-CMs.

However, it does not preclude other explanations, and it is possible the action potentials could take

on a more distinct shape if differences in ion channel kinetics were also included, see discussion in

Section 3.4.4.

3.4.3 Predictions of drug action

The sharp increase in IKs seen in the Cor.4U tailored models suggests Cor.4U cells have a stronger

reliance on IKs as a repolarising force, and will therefore be less likely to show action potential

prolongation when treated with IKr blocking drugs (see, e.g. the Figure 5 of Blinova et al., 2017,

which shows, for eight out of 12 drugs with comparable concentrations and prolongation in iCells,

the Cor.4U cells have a smaller APD prolongation than the iCells). Consistent with this suggestion,

simulations of treatment with the potent IKr blocker Dofetilide showed only a modest increase in

APD at concentrations that caused the iCell-cell based model to display excessive action potential

prolongation resulting in alternans. Treatment with Quinidine, a less potent IKr blocker, showed

similar results.

The modest APD increase predicted by the tailored models underestimated the APD prolongation

observed in the data, suggesting the role of IKr as a repolarising force was underestimated in these

models. Application of Verapamil, which blocks ICaL as well as IKr, had a smaller effect in our

tailored models than in the original model, which is again consistent with the lowered levels of IKr

and ICaL. The strong IKs-reliance we observed may be problematic when using these hiPSC-CMs as

models for ventricular myocytes, where IKs only plays a major part when other repolarising currents

are blocked or in the presence of sympathetic stimulation (Jost et al., 2005).

We expect more refined experiments, as outlined in the rest of this thesis, will be able to better

separate the ionic currents and to better estimate IKr conductance.
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3.4.4 Limitations and lessons learnt

In this chapter, we used a set of conventional protocols together with a simple method of scaling

maximum conductances to create models tailored to individual hiPSC-CMs. The obtained fits were

clearly not optimal, and the ion current profiles during voltage steps could not be recreated well.

It is likely that the model we used does not accurately capture the kinetics of ion currents in the

experiments, for example due to differences in subunit expression (Lei et al., 2017b), the difference of

temperature (see e.g. Chapter 5), or the measurement difficulties inherent in experiments (Chapter 6)

and modelling (Lei et al., 2020c). A channel’s kinetics play an important role in its contribution

of a current to the different phases of the action potential. Modifying the kinetic parameters which

characterise the I-V relationship for the activation, inactivation, deactivation, etc. of a channel could

change both the current and the action potential, and would influence responses to drugs. Varying

the kinetic parameters would also alter the conductances we estimated. Since models of ion channel

kinetics contain many parameters, specifically designed experiments (e.g. with channel blockers

and/or specialised voltage protocols) will be required to refine these kinetic models (Clerx et al.,

2019a; Whittaker et al., 2020). However, it typically takes too long to apply an array of conventional

protocols to fully characterise a current’s kinetics in a single cell, before considering characterising

multiple ion currents. In the next chapter, Chapter 4, we therefore redesign the voltage-clamp

protocols to rapidly characterise the kinetic models using a high-throughput system.

The method of fitting multiple currents to a single experimental recording is a highly useful approach,

as it reduces the number of experiments needed to tailor a model. However, due to the limitation

of experiments being performed in different cells, we were not able to examine the covariance

between the inward and outward currents. Also, since the fitting depends on the number of current

conductances to be fitted and the experimental data (e.g. the quality of the data and the actual current

shape), one may run into problems of practical identifiability if one tries to refit kinetic parameters

here (e.g. multiple combinations of conductance and kinetic parameters that can provide an equally

good fit, as in Fink and Noble, 2009). Additional experiments with refined experimental designs

will therefore be needed to identify all parameters. We use the idea of optimal experimental design

(OED) to account for such limitations in Chapter 7.

There are further limitations that are not addressed in this thesis but are worth pointing out. First,

variability/uncertainty in drug-ion channel interaction parameters (IC50s) from different labs or

repeats of experiments will also impact our simulation predictions. A probabilistic uncertainty

quantification framework using the techniques proposed by Elkins et al. (2013) and Johnstone et al.

(2017) could be used to address this. Second, the Cor.4U-tailored predictions of both baseline action

potential and drug responses matched the optical mapping data more closely than the un-tailored

model. However, these optical mapping data were gathered from cultures of spontaneously beating

electrotonically coupled cells, while our simulations are of paced single hiPSC-CMs. Another avenue

for future work would be to combine (a representative distribution of) tailored cell-specific models

into heterogeneous tissue models (Bowler et al., 2019).

To conclude, the conventional approach and the perfect-kinetics assumption that we have taken in this

chapter shows multiple drawbacks. It clearly demonstrates that more intricate methods are needed to
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characterise the currents and to refine the kinetics of the currents. In the next few chapters, we address

these limitations through experimental design; we first focus on improving ion channel kinetics

modelling before coming back to hiPSC-CMs later in Chapter 7. In the next chapter, we look at the

human Ether-à-go-go-Related Gene (hERG) potassium channels encoding the pore-forming alpha

subunit of the ion channel KV11.1 that conducts IKr, and develop methods to rapidly characterise its

kinetics.

3.5 Data and Software Availability
Data and software (GitHub repository):

https://github.com/CardiacModelling/tailored-ipsc-models
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High-Throughput Rapid Characterisa-
tion of hERG Kinetics

This chapter was published as: Lei, C. L., Clerx, M., Gavaghan, D. J., Polonchuk, L., Mirams,
G. R., and Wang, K. (2019b). Rapid characterization of hERG channel kinetics I: using an
automated high-throughput system. Biophysical Journal, 117(12):2438–2454.

Contributions: I assisted in designing the study, carried out the experiments, designed the compu-
tational analysis, wrote the simulation codes, and performed all the analysis.

This chapter also led to: Lei, C. L., Fabbri, A., Whittaker, D. G., Clerx, M., Windley, M. J., Hill,
A. P., Mirams, G. R., and de Boer, T. P. (2020b). A nonlinear and time-dependent leak current in
the presence of calcium fluoride patch-clamp seal enhancer. Wellcome Open Research, 5:152. This
publication investigated the origin of the leftover current described in Section 4.5.3 below.

Overview:

In the previous chapter, we created cell-specific models by fitting the maximum conductances in an action

potential model to hiPSC-CM data, under the assumption of perfect current model kinetics. However, we saw

that the fitted models were not optimal under this assumption, as the ion current profiles during voltage steps

could not be recreated well. The perfect kinetics assumption becomes inevitable when tailoring whole-cell

models as in Chapter 3, mostly because the conventional voltage-clamp protocols require a long duration

to measure each specific gating processes. An array of these conventional protocols would be needed to

fully characterise a current; such a protocol would typically be too long to be applied in a single cell, and

characterising multiple ion current kinetics would be even more difficult. We therefore need a different design

of experiments to characterise cell-specific models of ion channel kinetics.

In this chapter, we consider the human Ether-à-go-go-Related Gene (hERG) channel when developing a new

approach to experimental design, allowing rapid characterisation of its kinetics. hERG is a good choice for

our new approach because of its great importance in cardiac electrophysiology and safety pharmacology.

We develop a new 15 second protocol to characterise hERG (KV11.1) kinetics, suitable for both manual and
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high-throughput systems. We apply the protocol to Chinese Hamster Ovary (CHO) cells stably expressing

hERG1a on the Nanion SyncroPatch 384PE, a 384-well, automated patch-clamp platform. We define and

apply quality control criteria, selecting 124 cell measurements from the full dataset. From these recordings

we construct 124 cell-specific variants/parameterisations of a hERG model at 25 ◦C. We then validate these

models by comparing their predictions to measurements of eight further (validation) protocols, run on the same

cells in the same experiment. We combine the experimental recordings using a hierarchical Bayesian model,

which we use to quantify the uncertainty in the model parameters, and their variability from experiment to

experiment.

This chapter provides the foundation for the next two chapters, and it demonstrates the feasibility of designing

experiments to high-throughput characterise ion channel kinetics. Moreover, the results of the experiment-

to-experiment variability here allows us to suggest reasons for the observed variability, which we investigate

further in Chapter 6.

4.1 Introduction
As described in Chapter 2, voltage-clamp experiments are a common source of data for calibrating ion

channel models, and are typically time consuming to perform. For example for the human Ether-à-

go-go-Related Gene (hERG) channel, in Vandenberg et al. (2006), examining voltage dependence of

activation using the conventional protocols lasted at least 10 minutes before examining deactivation,

inactivation and recovery from inactivation. Hence these protocols are typically too long for a single

cell recording, as discussed in the previous chapter.

Chapter 2 also discussed the importance of understanding and quantifying variability between

experiments when establishing the credibility and applicability of model predictions, whether it

be due to cell-to-cell variability (also known as extrinsic variability or population variability) or

to observational errors/uncertainties. Quantifying the variability in ion channel kinetics requires a

large number of high-quality patch-clamp measurements, and ideally all recorded cell-specifically to

include any correlation effect. However, the duration of a standard combination of protocols makes it

difficult to use them to fully characterise the current in a single cell, so that reaching the required

number of cells even on automated high-throughput systems for a thorough statistical analysis would

be a very difficult and time consuming task.

In order to address the above two challenges, this chapter demonstrates the feasibility of designing

and applying high-throughput experiments to accurately and rapidly characterise cell-specific ion

channel kinetics. In particular, we design experiments to characterise the kinetics of hERG on a

high-throughput system.

Previous efforts have been made to address the variability observed in drug block measurements on

the hERG channel (Kirsch et al., 2004). More recently, simulation experiments have shown that

condensed voltage-clamp protocols can be used to provide the required information to characterise

channel kinetics in a much shorter time (Hobbs and Hooper, 2008; Fink and Noble, 2009). A

study by Beattie et al. (2018) demonstrated in vitro that sinusoidal protocols can be used to rapidly
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(8 seconds) characterise hERG kinetics on a manual patch-clamp setup. This study addressed part of

the challenges, as it demonstrated that it is possible to design experiments to characterise cell-specific

hERG kinetics models on a manual patch-clamp system for nine cells. However, due to hardware

limitations, some automated high-throughput systems can only perform square wave or ramp voltage-

clamp protocols, so the sinusoidal protocols are not applicable in these systems. Therefore, the

variability of baseline hERG characteristics remains incompletely understood, due to an insufficient

number of recordings available from a manual patch-clamp setup.

This chapter presents a new approach to overcome these problems by using a novel protocol and

a high-throughput system to rapidly record many cells’ kinetics in parallel. Using these methods,

we construct 124 cell-specific parameterisations of a hERG model, and validate all of our model

predictions against a set of independent protocols that have not been used in training/fitting the

model. To ensure the stability and reproducibility of our results within the same cells, we repeat all

of our measurements twice. We employ a hierarchical Bayesian framework (a multi-level statistical

modelling technique) to describe the variability of hERG channel conductance and kinetics between

cells, and to infer the covariance between the model parameters across different cells. A schematic of

this approach is shown in Figure 4.1.
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Figure 4.1: A schematic of the high-throughput characterisation experiments. On the left, we show a 384
well high-throughput patch-clamp platform. In each well, automated patch-clamp experiments (see also
Figure 2.4B) are performed using the new voltage-clamp protocol (V) to elicit information-rich IKr signals
(see Figure 4.2). Probability distributions of the model parameters can be inferred for each well’s experiments
(see Section 4.3.1). With the large number of repeats, the variability of hERG kinetics parameters can also be
studied (shown by the red curve, see also Section 4.3.2).

This chapter presents a first step in moving away from the approach used in Chapter 3. We not only

develop a novel method to construct validated trustworthy models of ion channel kinetics to overcome

the limitations set out by the previous chapter, but also begin to consider cell-to-cell variability in

ion channel models by performing rapid characterisation experiments on a high-throughput system,

allowing us to investigate the sources of this variability further in Chapter 6.

In the next section, I first describe the novel protocol design. Then I describe methods to analyse

data collected using the new protocol. We then test the robustness of the protocol with synthetic data
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studies. Finally, I provide the experimental methods and present the experiments and subsequent

models using this new protocol on the Nanion SyncroPatch 384PE, a 384 well automated patch-clamp

platform (Figure 4.1).

4.2 Protocol Design for Rapid Characterisation
of Current Kinetics

I first describe the mathematical model of hERG that we use in this chapter, as it motivates the design.

Then I introduce the novel protocol and discuss the rationale underlying the design.

4.2.1 Mathematical model

The model structure that we use is a Hodgkin and Huxley-style (see also Chapter 2) hERG model

by Beattie et al. (2018), and this model structure has been widely used in many studies with slight
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Figure 4.2: (A) The Hodgkin-Huxley model structure shown in equivalent Markov state diagram format.
Four states are linked with arrows with rate transitions described on the right. The probabilities of each state
are given next to them in terms of the Hodgkin-Huxley gates a and r. (B) A manual patch-clamp protocol
comprised of an 8-second voltage-clamp protocol designed for rapid characterisation of ion channel kinetics
by Beattie et al. (2018). (C) Our novel 15-second protocol, which we term the ‘staircase protocol’, designed
for any patch-clamp set-up including high-throughput automated systems, that is similarly able to characterise
the full kinetics of the hERG channel model. Both (B) and (C) show the voltage protocol (top panel), an
example of the simulated current using the room temperature parameters from Beattie et al. (2018, Cell #5)
(middle panel), and the corresponding state occupancy (bottom panel).
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modifications: the root of the model traces back to Zeng et al. (1995), where the same model structure

is used but with the inactivation gate modelled as an instantaneous steady-state response. Later in

the Ten Tusscher et al. (2004) model, the same model structure was used, but extra parameters were

introduced to make the time constant independent of the steady state. In this chapter, we refer the

current conducted by the hERG1a (KV11.1) channel as IKr for convenience. The current is modelled

as a function of the voltage V , with a standard Ohmic expression,

IKr = gKr · a · r · (V − EK), (4.1)

where gKr is the maximal conductance, a is a Hodgkin and Huxley (1952a) activation gate, and r is

an inactivation gate. EK is the reversal potential, as defined in Chapter 2; and here EK was calculated

directly using Eq. (2.8), where the valency of K+ (zK) is 1. The extracellular and intracellular

concentrations of K+, [K+]o and [K+]i, respectively, were determined by the experimental solutions

as 4 mM and 110 mM, respectively. The equivalent Markov model structure is shown in Figure 4.2,

where

da
dt

=
a∞ − a
τa

,
dr
dt

=
r∞ − r
τr

, (4.2)

a∞ =
k1

k1 + k2
, r∞ =

k4

k3 + k4
, (4.3)

τa =
1

k1 + k2
, τr =

1
k3 + k4

, (4.4)

and

k1 = p1 exp(p2V), k3 = p5 exp(p6V), (4.5)

k2 = p3 exp(−p4V), k4 = p7 exp(−p8V). (4.6)

Our model consists of nine positive parameters θ = {gKr, p1, . . . , p8}, where the units of the parame-

ters in this chapter are {pS, s−1, V−1, s−1, . . .}. All of model parameters must be inferred from the

experimental data.

As discussed in Chapter 2, we expect a leak current to ground to occur in the experiments. We use

the common assumption that the leak current is linear in the voltage to model

Ileak = gleak · (V − Eleak), (4.7)

where gleak is the leak current conductance and Eleak is the leak current reversal potential.

In this chapter and the next, we assume the voltage V in the model takes the exact form of the voltage-

clamp protocols (denoted as Vcmd in Chapter 6), which is a typical assumption frequently used when

analysing experimental data. We criticise this assumption in the Discussion and thoroughly assess in

Chapter 6.
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4.2.2 Staircase protocol

Our novel 15 second protocol designed for characterising hERG kinetics is termed the ‘staircase

protocol’. A comparison between the staircase protocol and a previously developed sinusoidal

protocol (Beattie et al., 2018) is shown in Figure 4.2B and C. Due to hardware limitations, the

sinusoidal protocol does not work on many high-throughput automated systems as they cannot

perform clamps to arbitrary time-varying functions and are limited to linear ramps and steps. Hence

the idea from Beattie et al. (2018) — using an ‘information-rich’ protocol — was adapted, and

the rationale of our staircase protocol is discussed below. We designed the staircase protocol with

only voltage steps and ramps, such that it is applicable to any patch-clamp machine. This staircase

protocol is shown in Figure 4.2C. A time series version of the full protocol is available online, see

Data and Software Availability at the end of the chapter.

The underlying rationale of the staircase protocol shown in Figure 4.2C is to force the system to

reveal its full dynamics by exploring different transitions of the voltage, over a physiologically

relevant voltage range. By observing the changes in the current before and after each step, the voltage

dependency of the channel at that particular voltage transition can be deduced. Each voltage step is

held for 500 ms, which is long enough to observe the characteristic decay of IKr. Therefore, by going

through different step-ups and -downs, the protocol explores the dynamics at different voltage values,

and hence our statistical inference method is able to infer the underlying model parameters.

Two ramps are implemented before and after the main staircase. The ramp at t = 0.3 s, termed the

‘leak ramp’, is used to estimate the leak current. We assumed that at −80 mV, IKr is fully closed and

will not be opened by going to a voltage below −80 mV. We therefore implemented a linear ramp

from −120 mV to −80 mV over 400 ms. All non-zero current measured during the leak ramp was

assumed to be leak current in the form of Eq. (4.7), and a linear regression can then be used to fit

its current-voltage (I-V) relation and to obtain the leak model parameters. This leak ramp can be

used to check the linearity of the leak current, that is the linearity in its I-V relation (see Figure 4.3),

which cannot be achieved using the standard single voltage step method for leak estimation (see

Section 4.5.3.2).

The second ramp at t = 14.41 s, termed the ‘reversal ramp’, is intended to estimate experimentally

the reversal potential EK by having a ramp over 100 ms that quickly crosses the expected EK, which

we expect to be in the range of −70 mV to −100 mV. At these voltages no current can be measured

as the channel is nearly closed. We therefore implemented a large step up to 40 mV to open the

channel followed by a 10 ms step to −70 mV to remove capacitive effects before the reversal ramp,

so that we can record a high signal-to-noise ratio (SNR) IKr trace that goes from positive to negative

before the channel closes. Examples of experimentally recorded currents (see Section 4.5) during the

two ramps are shown in Figure 4.3.
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Figure 4.3: Example of an experimental recording (see Section 4.5) using the two ramps (greyed out sections)
implemented in the staircase protocols. The first ramp is designed to estimate the leak current; the second
ramp is designed to experimentally estimate the EK value. Top three panels show the staircase voltage-clamp
protocol (grey), the raw currents before (blue) and after (orange) E-4031 application, and the estimated IKr

(green; the subtraction between the blue and orange traces), respectively. Below shows the I-V curves measured
during the two ramps. Linear regressions were applied to each of the I-V relation in the first ramp, shown as
dashed lines. Third order polynomial regression was applied to the I-V curve in the second ramp, shown as
dashed lines (see also Figure 4.23). Both of them show a good fit to the data.

4.3 Analysis Methods

4.3.1 Statistical model and parameter inference

To infer model parameters from experimentally observed data under a probabilistic and Bayesian

framework, we specified a statistical model to relate the mathematical model and the observed

experimental data:

Idata
Kr = Imodel

Kr + ε. (4.8)

We assumed that noise arises from a normal distribution ε ∼ N(0,σ2). As described in Chapter 2,

this is equivalent to writing Idata
Kr ∼ N(Imodel

Kr ,σ2), which allows us to formulate the likelihood of

observing the data y = {yk} given parameters φ as

p(y | φ,σ) =
1

√
2πσ2

exp

−∑
k

(zk(φ) − yk)
2

2σ2

 , (4.9)
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where z = {zk} is the model simulation of the Imodel
Kr . We transformed our positively constrained

physical model parameters θ to unconstrained optimisation variables φ using a log-transformation:

φ = ln(θ). (4.10)

Using Bayes’ theorem (see Chapter 2), we can now write an equation for the likelihood of a parameter

set given the observed data (the posterior) as

p(φ,σ | y) =
p(φ)p(y | φ,σ)

p(y)
∝ p(φ)p(y | φ,σ), (4.11)

with the prior

p(φ) = U(φmin,φmax), (4.12)

whereU(·) represents a uniform distribution.

Here y was assumed to be the Idata
Kr in Eq. (4.8), after leak correction and E-4031 subtraction have

been applied as part of the data processing (see Section 4.5.3). For the prior, we assumed a uniform

distribution, using bounds adapted from the physical constraints for the rate constants in the kinetics

parameters introduced in Beattie et al. (2018), which has the form k = A exp(BV), viz., Eqs. (4.5)

and (4.6). For parameters of the form A, [θmin
i , θmax

i ] is chosen to be [10−7, 103]ms−1; and for

parameters of the form B, [θmin
i , θmax

i ] is chosen to be [10−7, 0.4]mV−1. Such a formulation extends

our model parameters to {θ,σ}, to fully describe both the biophysical and statistical models.

We used a two-step approach to infer the model parameters. Firstly, we used a global optimisation

algorithm, Covariance Matrix Adaptation Evolution Strategy (CMA-ES), as described in Chapter 2,

to identify the parameters. Secondly, we used a Monte-Carlo based sampling scheme to obtain the

posterior distribution, using a population Markov Chain Monte Carlo (MCMC) algorithm (Jasra et al.,

2007) with adaptive Metropolis (see Chapter 2) as the base sampler. The benefits of this approach

are twofold. First, using a Bayesian framework allows us to incorporate prior knowledge. Second,

we construct a probability (posterior) distribution to quantify uncertainty in the parameter set due to

noise in the data.

4.3.2 Hierarchical Bayesian model

As we collect hundreds of measurements from the automated high-throughput system, we would like

to also capture how the measurements vary between experiments (see Figure 4.1). This information

not only can be used to predict how the system might behave in the future, but can also be used to find

correlations between the parameters if formulated appropriately. One way of doing this is to consider

the IKr model parameters as random variables that are drawn from some unknown distribution. This

distribution has parameters of its own, which we are interested in. This gives rise to a hierarchical

problem: The model parameters for each cell are drawn from the ‘top-level’ distribution, and the data

generated from each cell is drawn from a statistical distribution based on those model parameters.

We applied a multi-level modelling technique known as a hierarchical Bayesian model to combined

multiple experimental recordings. We first introduce the hierarchical Bayesian model framework,

then we describe how it was applied to the data and the hERG model.
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4.3.2.1 An introduction to hierarchical Bayesian modelling

The basic idea of the framework follows from the Bayesian approach discussed in Chapter 2. Let us

suppose we have some observed data yi and a dataset-specific model with parameter θi governing

the data generating process for yi, with N observed data, i.e. i = 1, 2, . . . , N. If we assume that the

parameters θ1, θ2, . . . , θN are generated1 from some ‘top-level’ process governed by some parameter

ζ. The ‘top-level’ parameters, ζ in this case, are known as the hyperparameters, and the prior

distributions of these hyperparameters are called the hyperpriors. The statistical model for the data i

can be summarised as

Data yi ∼ p(yi | θi, ζ),

Parameter θi ∼ p(θi | ζ),

Hyperparameter ζ ∼ p(ζ).

Applying Bayes’ theorem, with the likelihood p(yi | θi, ζ) and its prior p(θi, ζ), the posterior

distribution for this hierarchical Bayesian model becomes

p(ζ, θi | yi) =
p(yi | θi, ζ)p(θi, ζ)

p(yi)
(4.13)

=
p(yi | θi, ζ)p(θi | ζ)p(ζ)

p(yi)
(4.14)

∝ p(yi | θi, ζ)p(θi | ζ)p(ζ). (4.15)

4.3.2.2 Applying hierarchical Bayesian modelling

Under the hierarchical Bayesian model framework, we assume that the vector of the (transformed)

parameters φ for a particular cell j is a sample from a multivariate normal distribution which describes

how these parameters are distributed between all cells, namely φ j ∼ N(µ, Σ). Given our choice of

parameter transformation, this is equivalent to writing θ j ∼ LogNormal(µ, Σ), that is, the vector of

parameters θ for a particular cell j is a sample from a multivariate log-normal distribution. Then we

used the hierarchical Bayesian model to infer the hyperparameter set ζ = {µ, Σ}, a concatenation of

all the individual hyperparameters within the mean vector µ and covariance matrix Σ across cells,

and hence determined any correlation in model parameter sets between cells. Later we tested the

validity of this log-normal distribution assumption in Section 4.6.3.

The hierarchical Bayesian posterior was specified as the product of: (a) the probability of producing

data y j on each cell given the model parameter vector for each cell θ j and noise σ j,

plow-level =
Ne∏
j=1

p (y j
∣∣∣ θ j,σ j) ; (4.16)

(b) the probability of obtaining each individual well parameter set θ j from the ‘top-level’ log-normal

distribution across wells defined by the hyperparameters µ and Σ,

ptop-level = p (θ1, . . . , θNe

∣∣∣µ, Σ) ; (4.17)

1These parameters must be generated exchangeably, i.e. they do not follow some specific order.
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and (c) the priors — the hyperprior and the prior of σ j,

ppriors = p (µ, Σ) ×
Ne∏
j=1

p (σ j) . (4.18)

That is,

p (µ, Σ, θ1, . . . , θNe ,σ1, . . . ,σNe

∣∣∣ y1, . . . , yNe) ∝ plow-level × ptop-level × ppriors, (4.19)

where µ, Σ are the hyperparameters representing the mean vector and covariance matrix of the

individual ‘low-level’ parameters, and θ1,σ1, θ2,σ2, . . . , θNe ,σNe are the set of individual ‘low-level’

parameters for each of the Ne repeats of the experimental recordings y1, y2, . . . , yNe . The parameter

dependency for this hierarchical Bayesian model is shown in Figure 4.4.

Figure 4.4: Hierarchical Bayesian model showing parameter dependency for combining multiple experiments.
µ, Σ are the hyperparameters of the hierarchical model which represent the mean and covariance matrix,
respectively, of the parameters across wells. θ1,σ1, . . . , θNe ,σNe are the set of individual ‘low-level’ parameters
for each of the Ne wells in the high-throughput experimental recordings y1, . . . , yNe . The parameters in the box
are different for each well and are indexed as the jth well. All parameters, and their probability distributions,
are inferred from the shaded variable y j, the experimental data. Prior distributions are required for parameters
with no inward-pointing arrows.

4.3.2.3 Choice of hyperparameter priors

Here we define our choice of hyperparameter priors, which is required for our hierarchical Bayesian

model, see Figure 4.4. For computational ease, we chose the priors of the hyperparameters to be

conjugate priors. A conjugate prior is the prior that makes the posterior distribution follows the same

parametric form as the prior distribution, and it is useful because we can directly perform Bayesian

updating by modifying the parameters of the prior distribution rather than computing integrals, see

for example Gelman et al. (2013).

Since we assumed the (transformed) model parameters follow a multivariate normal distribution

p(φ j | µ, Σ) = N (µ, Σ) , (4.20)
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the prior of µ was chosen to be a multivariate normal distribution, and the prior of Σ was chosen to

be an inverse-Wishart distributionW−1, see for example Gelman et al. (2013) for the derivation of

these conjugate priors. That is, we specified

p(µ, Σ) = p(µ | Σ)p(Σ), (4.21)

where

p(µ | Σ) = N
(
µ0,

1
m

Σ

)
and p(Σ) =W−1(Ψ, ν). (4.22)

µ0, m, Ψ, ν are the prior parameters, where m controls our confidence in the prior mean µ0, and ν for

the prior covariance Ψ. Then the posterior distribution of the hyperparameters, which is required as

part of the hierarchical Bayesian model (Eq. (4.19)), becomes

p
(
µ
∣∣∣ Σ,φ1, . . . ,φNe

)
= N

Neφ+ mµ0

Ne + m
,

1
Ne + m

Σ

 , (4.23)

and

p
(
Σ

∣∣∣φ1, . . . ,φNe

)
=W−1

(
Ψ + NeS +

Nem
Ne + m

(φ − µ0)(φ − µ0)
T , Ne + ν

)
, (4.24)

where

φ =
1

Ne

Ne∑
j=1

φ j, (4.25)

and

S =
1

Ne

Ne∑
j=1

(φ − φ j)(φ − φ j)
T . (4.26)

We have now defined all the necessary components for the hierarchical Bayesian model.

4.3.2.4 Correlation and posterior predictive distribution

Here we describe the benefits of using the hierarchical Bayesian model defined in Eq. (4.19). First,

we can use the inferred covariance matrix Σ in Eq. (4.19) to study the correlation (corr(θ)) between

the model parameters. The covariance matrix Σ and the correlation matrix corr(θ) are related by

corr(θ) = diag(Σ)−1/2 Σ diag(Σ)−1/2, (4.27)

where diag(·) denotes the diagonal entries of the matrix.

Second, we can compute the posterior predictive distribution p(θ | · · · ) using the hierarchical

Bayesian model, where (· · · ) indicates all other variables appearing in Eq. (4.19). The posterior

predictive distribution allows us to make predictions about how future experiments will behave. It

can be computed using

p(θ | · · · ) =
∫
ζ

p(θ | ζ)p(ζ | · · · ) dζ, (4.28)

where ζ = {µ, Σ}, a concatenation of all the individual hyperparameters within µ and Σ. The

integration was approximated by summing over the probability density functions which are defined

by the samples of ζ.
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4.3.3 Sampling the hierarchical distribution

We are not able to write down an analytical form of the posterior distribution, thus we approximate

the posterior through sampling from the distribution, as discussed in Chapter 2. However, the number

of parameters in the hierarchical Bayesian model is very large. For Eq. (4.19), it works out as

N(N + 1)/2 + (Ne + 1)N + Ne, for an N parameter IKr model. With our choice of IKr model and

the size of the dataset, we expect N = 9 and Ne > 100, giving us more than 1000 model parameters

and hyperparameters for which to infer probability distributions. This high dimensional problem

can be computationally intractable using algorithms such as the Adaptive-Covariance Metropolis

algorithm described in Chapter 2. Instead, Metropolis within Gibbs (MwG) (Gilks et al., 1995)

sampling is a very powerful method to explore high dimensional probability distributions, such as

our hierarchical Bayesian model, but even MwG can be very time consuming. We therefore tested a

further simplification of the MwG to approximate the sampling algorithm, which we have termed

‘pseudo-Metropolis within Gibbs (pseudo-MwG)’.

With our pseudo-MwG, we assumed that the likelihoods of our individual experiment parameters

are unlikely to be affected by the top-level distribution. This is because the sampled data using the

information-rich staircase protocol have thousands of data points whilst we have only ∼ 100 individual

experiments. We therefore separated the sampling steps between the likelihood of all the individual

experiments and the likelihood of the hyperparameters. That is, we first independently sample

the likelihood of each individual experiment, using the population MCMC algorithm. Then we

sample the hyperparameters using Eqs. (4.20)–(4.26) while replacing φ j with φ j,l which are the

independently obtained l th samples of the individual experiments j.

We tested the validity of this simplification in Section 4.4.4 (Figure 4.8) by comparing the hierarchical

Bayesian model parameter inference on synthetic data using the pseudo-MwG and the MwG, and

found that the pseudo-MwG can approximate the MwG very well. Note that this simplification is

only applicable for our particular setting — where the number of data points in the time traces vastly

outweighs the number of cells, and in fact effectively we conclude the hierarchical model is not

needed — the top level parameters do not significantly influence the inference of the lower level

ones.

We note that we can further simplify our pseudo-MwG, which we call a ‘simplified pseudo-MwG’,

given our information-rich staircase protocol. Later we see that the MCMC marginal distributions in

Figure 4.8 are very narrow relative to the spread of each of the experiment parameters. By approxi-

mating these narrow distributions as single points (i.e. the Dirac delta functions at their maximum

a posteriori (MAP) estimates), we then estimate the posterior distribution by simply sampling the

hyperparameters. We use Eqs. (4.20)–(4.26) to sample the hyperparameters while replacing φ j with

point-estimates of the parameters of the individual experiments j. This simplification is checked

against the MwG using synthetic data in Section 4.4.5.

4.3.4 Numerical implementation

Model simulations, inference, and sampling were performed as described in Chapter 2. All codes

and data are freely available online, see Data and Software Availability at the end of the chapter.
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4.4 Synthetic Data Studies
Before implementing experiments, we confirmed the identifiability of model parameters using our

protocols and parameter inference algorithms through a synthetic data study. First, we used the

synthetic data to design our protocols and to ensure that the protocols give access to sufficient

information for parameter characterisation. Second, we assessed our inference methods, described

in Section 4.3.1, by asking how confident we are in our inferred parameters. Finally, we tested our

hierarchical Bayesian model, to ensure that it is possible to infer the underlying distribution of the

parameters.

4.4.1 Generating synthetic data

We generate synthetic data by simulating the IKr model in Eq. (4.1), with some fixed known parameter

sets θtrue, j and j = 1, 2, . . . , Ne, voltage protocol, initial values, and sampling time (time-step).

First, we based our choice of θtrue, j on the parameters identified from a previous study (Beattie et al.,

2018, Table F11 Cell #5), θlit. We then generated a set of parameters {θtrue,1, θtrue,2, · · · , θtrue,Ne}.

We assumed there exists an underlying correlation between each model parameter, which can be

described by a covariance matrix Σtrue. Therefore we sampled the parameters from a (covarying)

multivariate normal distribution, that is

θtrue, j ∼ LogNormal(θlit, Σtrue). (4.29)

To generate the covariance matrix Σtrue, we first randomly generated a correlation matrix corr(θtrue)

for this synthetic data study, which was a sparse symmetric definite positive matrix. Then the

covariance matrix Σtrue was computed by inverting Eq. (4.27) and setting its (i, i) entry to be the

variance ρ2
i (which we set ρi = 0.2 ×

∣∣∣ θlit
i

∣∣∣). In other words, we considered that we performed Ne

experiments (recordings), and there was cell-cell variability between experiments.

Second, we fixed the voltage V of the model as the calibration voltage-clamp protocol — the staircase

protocol (see Figure 4.2C) that we developed for the high-throughput systems. Third, for the initial

values, we ran the model at V = −80 mV for a long period (100 s), to allow the model to settle at its

steady state at V = −80 mV. Since we are able to mimic this in the actual experiments, we assume

the model does not depend on the choice of the initial values.

Finally, we add synthetic noise which follows an independent and identically distributed (i.i.d.)

normal distribution with a mean of zero and standard deviation σ (i.e. ∼ N(0,σ2)) to the simulated

traces with time step 0.5 ms, as we specified in our statistical model in Section 4.3.1. We chose σ at a

reasonable scale, σ = 11 pA, to mimic the white noise observed from some of our pilot experiments

using the high-throughput system.

4.4.2 Single synthetic experiment

We start by showing the staircase protocol is information-rich for our model, in that we are able to

fully recover the ‘true’ parameters in a synthetic data study using our protocol. Figure 4.5 shows the
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inferred model parameters in a synthetic experiment, where θtrue = θlit. It shows three2 independently

sampled marginal posterior distributions of each parameter (first and third columns), with indications

of the ‘true’ parameters θtrue (black dashed lines) which we used to generate the synthetic data, and

the CMA-ES inferred parameters (red lines). Both the traces (second and fourth columns) and the

three independently run posterior distributions show a good indication of the convergence of the

MCMC chains, and the Gelman-Rubin convergence statistic, R̂, was less than 1.1 for all parameters

(Gelman et al., 2013). We are able to recover the ‘true’ parameters θtrue with high accuracy and

a narrow credible interval3 using our inference techniques together with our developed staircase

protocol. Therefore we are confident that, with both the high information-content protocol and the

inference techniques, it is theoretically possible to infer all parameters of the model.

Figure 4.5: Parameter inference of single synthetic experiment, Ne = 1. First, Third columns: Show the
marginal histograms of the posterior distribution of each parameter. Second, Fourth columns: The trace
plots for our MCMC chains indicating that our MCMC chains have converged and are well mixed. Each panel
shows the posterior distribution of three independently run MCMC with good agreement. The true (synthetic)
parameters are indicated as black dashed lines and the CMA-ES inferred parameters are shown as red lines.

4.4.3 Hierarchical synthetic experiments

Figure 4.6 shows the results of the hierarchical Bayesian model applied in the synthetic data study

with Ne = 120. It shows the marginal histograms of the model parameters for each individual

experiment (left y-axis) and the marginal posterior predictive distribution (right y-axis, red lines).

This synthetic data study is equivalent to having Ne repeats of the same experiment. Unlike the single

experiment study in Section 4.4.2, the implications of the obtained posterior predictive distribution

p(θ | · · · ) are much more powerful.

First, we can view this posterior predictive distribution as the underlying distribution that governs the

parameters. The marginal posterior predictive distributions closely resemble the true distribution

(black dashed lines, the multivariate normal distribution in Eq. (4.29)). This indicates that we are able

2Typically we used three to four independent chains starting with random starting points sampled from the priors.
3Non-strictly speaking, a credible interval is the Bayesian version of the confidence interval.
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to recover the underlying distribution of the parameters, and therefore we can rely on the methods to

be applied in real experiments.

Second, as the name implies, this is a predictive distribution. Given the observed individual ex-

periments, we can infer a distribution which allows us to predict what might happen in a future

experiment. To demonstrate this, we can consider the posterior predictive distribution in Eq. (4.28)

as p(θNe+1 | · · · ), where θNe+1 is our ‘future’ (Ne + 1)th experiment that we perform. Therefore the

distribution that we construct is able to tell us what is likely to happen in the future experiments —

based on the observations from previous experiments.

Figure 4.6: Parameter inference using the hierarchical Bayesian model in the synthetic data study, with
Ne = 120. Left y-axis: the marginal histograms of the model parameters for each individual experiment. The
histograms are normalised such that the area under each histogram equals to unity, to represent the marginal
distributions. Right y-axis: the marginal posterior predictive distributions and the true probability density
function that generates the parameters.

With a prior that had no assumptions about the underlying covariance between parameters, we were

able to reconstruct the correlation matrix corr(θ) in Eq. (4.27) of our predefined distribution. The

posterior marginal histograms for each entry of the correlation matrix are shown in Figure 4.7 (upper

triangle). The diagonals are by definition equal to one, so they are not shown. All the inferred

marginal posterior distributions for each entry cover the true underlying correlation value (dashed

black vertical lines). Therefore we have confidence that our method is able to correctly infer the

underlying correlation between parameters.

Figure 4.7 (lower triangle) shows the correlation between each pair of parameters. Each contour

ring represents the 95% credible intervals of the joint distribution of the two parameters, for both the

recovered (blue) and the true (black-dashed) covariance matrices. As long as the main axis of the

ellipse is not parallel to the x- or y-axis, it indicates the two parameters are not pairwise-independent.
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The diagonal shows the sampled predictive posterior distributions; the mean of these samples gives

p(θ | · · · ) shown in Figure 4.6. Again, it shows that we are able to recover the general shape of the

underlying correlation with high accuracy.

Note that, in this synthetic study, the correlation matrix that we recovered may not make any physical

Figure 4.7: The inferred correlation in model parameters across experimental wells using the hierarchical
Bayesian model on the synthetic data, with Ne = 120. All parameter values shown here are natural log-
transformed. The 120 parameter samples {θtrue, j} j (experiments) are shown in grey (dots and histograms),
which were generated with the distribution shown in black. Lower triangle (blue): The 95% credible region
boundary for the reconstructed distribution of parameters across experiments. Each credible region ellipse is
reconstructed from one sample of the µ, Σ across-experiment distribution parameters from the MCMC chain
of size 105, for clarity only 200 samples are shown here. Diagonal (green): The sampled posterior probability
density functions before integration to give p(θ | · · · ), shown in detail in Figure 4.6. Upper triangle (orange):
The marginal histograms for each entry of the correlation matrix defined by Eq. (4.27). The shadings in the
background indicate how these parameters relate to the model structure: the orange box contains the gates a in
model, green box contains gate r, and grey relates to the conductance.
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sense — as we randomly generated it. However, in real experiments, this correlation matrix tells us

which parameters are correlated. That is, if it contains any non-zero values in the off-diagonal with a

small credible interval in the orange distributions, then this informs us how the parameters of the

model are related.

4.4.4 Validation for the pseudo-Metropolis within Gibbs

The analyses of the experimental results shown in this chapter use the pseudo-MwG method. Here

we provide a brief comparison between our pseudo-MwG method and the MwG for approximating

the posterior predictive distribution. We use Ne = 30 to demonstrate their similarity. The value

was chosen as it is similar to the minimum cell yield we found in Chapter 5 and is computationally

tractable.

Figure 4.8 shows the posterior predictive distribution and the histograms of the individual experiments

constructed from the pseudo-MwG method (solid lines) and the MwG method (dashed lines). It has

the same style of plot as in Figure 4.6, where the left-axes show the marginal histograms and the

right-axes show the marginal posterior predictive distributions. The posterior predictive distributions

constructed from the pseudo-MwG and MwG look very similar. Therefore, with our staircase

protocol as the likelihood of the low-level experiments, we are able to simplify our procedure to

the pseudo-MwG without losing much accuracy comparing to the MwG algorithm. We expect the

agreement to hold for larger Ne as well.

Figure 4.8: Comparing the hierarchical Bayesian model parameter inference on synthetic data using the
pseudo-MwG (solid lines) and the MwG (dashed lines) methods, with Ne = 30. Left y-axis: the marginal
histograms of the model parameters for each individual experiment. Right y-axis: the marginal posterior
predictive distributions.
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4.4.5 Validation for a further simplified Metropolis within Gibbs

Figure 4.9 shows the posterior predictive distribution constructed from the simplified pseudo-MwG

method (solid lines) and the MwG method (dashed lines). Again, the posterior predictive distributions

constructed from the simplified pseudo-MwG and MwG look very similar. Therefore, we can further

simplify our pseudo-MwG sampling scheme to estimate the posterior-predictive distribution.

Figure 4.9: Comparing the hierarchical Bayesian model parameter inference on synthetic data using the
simplified pseudo-MwG (solid lines) and the MwG (dashed lines) methods, with Ne = 30. Left y-axis: the
marginal histograms of the model parameters for each individual experiment for the MwG method. Right
y-axis: the marginal posterior predictive distributions.

4.4.6 Convergence to the true distribution

We then check the performance of our method with different numbers of experiments/cells Ne, and

confirm that the result converges to the correct answer as Ne increases. We calculate the score with

root-mean-square error (RMSE) for the correlation matrix, where

RMSE(corr) =
1

Ne

√√√ Ne∑
i

Ne∑
j

(corr − corrtrue)
2
i, j, (4.30)

and its slight variant root-mean-square percentage error (RMSPE) for standard deviation (std), where

RMSPE(std) =

√√√
1

Ne

Ne∑
i

(
stdi − stdi

true

stdi
true

)2

× 100%. (4.31)

We used RMSPE, instead of RMSE, for the standard deviation to avoid different parameter magnitudes

from dominating the calculation.

Figure 4.10 shows the RMSPE of the standard deviation (left) and RMSE of the correlation (right)

as function of the numbers of experiments/cells Ne. For the RMSPE of the standard deviation,
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Figure 4.10: The RMSPE of standard deviation (left) and RMSE of correlation (right) as function of the
numbers of experiments/cells Ne. Each violin plot and posterior mean is constructed using 104 samples. Grey
lines show where Ne = 124, with an RMSE value of 0.064.

Figure 4.10 (left), we repeated the above analysis with Ne = 20, 30, ..., 120 and 125. We can clearly

see that the RMSPE of the standard deviation decreases as Ne increases. Hence it is convincing that

our method is converging to the true answer in the synthetic data studies.

For the RMSE of the correlation, Figure 4.10 (right), we further test the convergence rate of the

RMSE value. To run with sufficiently large Ne, we used the simplified pseudo-MwG. With this, we

ran Ne up to 2 × 104. We plotted both axes in natural-log scale. We then applied a linear regression,

in which a slope of −0.516 is obtained. Therefore, we conclude that convergence rate of the RMSE

of the correlation is roughly consistent with ∝ 1/
√

Ne. We also expect the likely errors in our

experiments in the next sections, with Ne = 124, to be about 6.4%, shown as grey lines.

4.5 Experimental Methods
Whole-cell patch-clamp voltage-clamp experiments were performed on Chinese Hamster Ovary

(CHO) cells stably transfected with hERG1a (KV11.1), at 25 ◦C, using the Nanion SyncroPatch 384PE

platform (Nanion Technologies GmbH, Germany), see Figure 4.1. The configuration of the automated

patch-clamp setup is very similar to the one shown in Figure 2.4B. I performed all experiments in

this chapter at F. Hoffmann-La Roche in Basel. The temperature of the system’s ‘cell hotel’ was

set to ∼15 ◦C. The machine is an automated high-throughput platform, in which each run (or chip)

is able to measure up to 384 wells (with one cell per well) simultaneously. Single hole chips with

medium resistance (Nanion order number #221102) were used.

A schematic of the experimental procedure is shown in Figure 4.11, which also shows the voltage-

clamp protocols used in the experiments. A total of nine voltage-clamp protocols were used, including

our newly developed staircase protocol (in green), and a sequence of validation protocols (in blue),

consisting of an activation I-V protocol, a steady-state inactivation I-V protocol, a hERG screening

protocol, a delayed afterdepolarization (DAD)-like protocol, an early afterdepolarization (EAD)-like

protocol, and action potential-like protocols with beating frequency 0.5 Hz, 1 Hz and 2 Hz, as shown

in Figure 4.11. Note that, due to the automated platform, the action potential-like protocols have to

be comprised of a series of linear ramps and steps rather than curves. Details of the protocols are

given in Section 4.5.1. Every protocol (the entire procedure in Figure 4.11) was applied to every well.
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Figure 4.11: A schematic of the experimental procedure showing the sequence of voltage-clamp protocols
used. A total of nine voltage-clamp protocols were used, each of them was performed four times: twice
before E-4031 addition, and twice after, to ensure stability and reliability of the recordings. Only the staircase
protocol (green, 15 seconds) was used for fitting (or calibrating) the mathematical model. All of the other eight
protocols (blue) were used for validation only. White sections indicate a non-measurement region, where cells
were held at −80 mV to allow the cells to settle to steady state between protocols (>5 s), or were continuously
stimulated by the hERG screening protocol to allow the drug to wash in (>5 min). For details of the protocols
please refer to Section 4.5.1.

Since our quality control (see Section 4.5.3.3) is primarily based on the calibration recording, we

decided to apply the calibration protocol at the end such that we could check the cell is stable for the

entire experiment, including the validation protocols.

Only the staircase protocol (green) was used in fitting (or calibrating) the mathematical model. We

show that we can fully characterise IKr for each cell using just this one protocol. A demonstration

that a mathematical model is able to reproduce the experimental training data is not sufficient to

conclude that it is a good representation of ion channel kinetics — in particular, we may be uncertain

how well the model performs under physiological conditions. The fitted models for each cell were

therefore validated by comparing with experimental data from each of the other eight protocols (blue

in Figure 4.11). Our validation set consists of (a) two conventional I-V protocols together with a

simple hERG activation step and (b) five physiologically-inspired protocols that mimic cardiac action

potentials. The first set allows us to compare with the conventional approach. More importantly, the

action potential clamps in the second set allow us to have confidence in predictions of IKr responses,

which is particularly useful when an ion channel model is embedded in a cardiac action potential

model. This series of validations aims to demonstrate that the models fitted using this new protocol

yield trustworthy cell-specific predictions.
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4.5.1 Details of the validation voltage-clamp protocol

4.5.1.1 Validation #1: Activation I-V protocol

From the initial period 100 ms at holding potential of −80 mV, a step to Vstep for 1 s, followed by

a 500 ms step to −40 mV, before a 100 ms step back to holding potential; this was repeated seven

times with a different Vstep on each repeat. Vstep ranged from −50 mV to 40 mV in 15 mV increments.

This protocol is shown in Figure 4.12B.

4.5.1.2 Validation #2: Steady-state inactivation I-V protocol

From the initial period 100 ms at holding potential of −80 mV, a step to 20 mV for 500 ms, followed

by a step to Vstep for 500 ms, before a 100 ms step back to holding potential; this was repeated

10 times with a different Vstep on each repeat. Vstep ranged from −140 mV to 40 mV in 20 mV

increments. This protocol is depicted in Figure 4.12C.

4.5.1.3 Validation #3: hERG screening protocol

From the initial period 100 ms at holding potential of −80 mV, a step to −40 mV for 50 ms, and a

step to 20 mV for 500 ms, followed by a step to −40 mV for 500 ms, before a 200 ms step back to

holding potential. This protocol is shown in Figure 4.12D.

Figure 4.12: All voltage-clamp protocols used in this chapter, from A to I are (green) our newly developed
staircase protocol described in Section 4.2.2, (blue) the activation I-V protocol, the steady-state inactivation
I-V protocol, the hERG screening protocol, the DAD-like protocol, the EAD-like protocol, and the action
potential-like protocol with beating frequency 0.5 Hz, 1 Hz and 2 Hz. All protocols are shown with the same
voltage axes for comparison; however due to the different time scales, each of them has its own time axis.
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4.5.1.4 Validations #4-8: DAD-like, EAD-like, action potential-like protocols

Details are described in Table 4.1, and each protocol is shown in Figure 4.12E-I, respectively.

DAD-like protocol DAD-like protocol Single action potential-like protocol
Type V (mV) Duration (ms) Type V (mV) Duration (ms) Type V (mV) Duration (ms)

Step -80 50 Step -80 50 Step -80 50
Step 34 3 Step 40 3 Step 34 3
Ramp 30 8 Step 20 3 Ramp 30 8
Ramp 26 15.2 Ramp 30 20 Ramp 26 15.2
Ramp -5 142.6 Step 30 10 Ramp -8 183.6
Ramp -21 38.4 Ramp -10 168 Ramp -21 39
Ramp -70 68.6 Ramp -15.5 50.6 Ramp -68 70.5
Step -20 2 Ramp -20 61.2 Ramp -80 25.2
Ramp -30 20 Step -20 60 Step -80 —
Ramp -40 10 Ramp -10 40
Ramp -65 15 Step -10 10
Ramp -80 12 Ramp -20 50
Step -80 15.2 Ramp -30 20
Step -80 350 Ramp -75 40.5

Ramp -80 50
Step -80 13.7
Step -80 100

Table 4.1: Details of the DAD-like (Validation #4), EAD-like (Validation #5), action potential-like (Validations
#6-8) protocols. It shows as a sequence of steps and ramps that approximates different types of action potential
shapes, as these are the only available settings in the automated machine used. The voltage (V) in the type
Ramp represents the final targeted voltage that the ramp finishes, starting from the previous voltage within the
given duration; for example, the first ramp in the EAD-like protocol means it starts from 34 mV and ramps to
30 mV in 8 ms. The single action potential-like protocol shows the protocol for one unit action potential-like
protocol that repeats in 0.5 Hz, 1 Hz, and 2 Hz.

4.5.2 Electrophysiology solutions

The compositions of all the electrophysiology solutions, including both the external solutions (bath

solutions) and the internal solution (equivalent to the pipette solution in manual patch clamp), are

shown in Table 4.2. External solutions were added in the following order: first ‘fill chip’ solution to

the measurement chip, and the suspended hERG CHO cells, then the ‘seal enhancer’ solution for

enhancing the seal by forming CaF2 crystal around the cells (note they have extra high concentration

of Ca2+, so we need to reduce/dilute it later), followed by adding the extracellular ‘reference’ solution

for Ca2+ dilution. All the voltage-clamp measurements were performed after adding all these external

solutions.

The solutions were added sequentially to the wells, by removing half of the previous solutions from

the wells each time. Therefore, the final ratios of the external (extracellular) solution are 1:1:2 —

proportions of 0.25 of the ‘Fill Chip’ concentrations, 0.25 of the ‘Seal Enhancer’ concentrations, and

0.5 of the ‘Reference’ concentrations, as shown in the ‘Extracellular’ solution in Table 4.2. For each

well, the volume of the final solution during recording is 80 µL.

4.5.3 Post-processing experimental data

We assumed that our observed current from hERG CHO cells under control conditions is

Icontrol
observed = IKr + Icontaminating + Ia

leak. (4.32)

78



Chapter 4

Solution Intracellular Fill Chip Seal Enhancer Reference Extracellular
pH value (titrated with) 7.2 (KOH) 7.4 (NaOH) 7.4 (HCl) 7.4 (HCl) —

Osmolarity (mOsm) 260-300 300-330 290-330 290-330 —

Chemicals Source / Cat# [ ] in mM [ ] in mM [ ] in mM [ ] in mM [ ] in mM

NaCl Merck / K38447104807 10 150 80 80 97.5
KCl Merck / K36782536 10 4 4 4 4
KF Acros Organics / 201352500 100 — — — —
MgCl2 Merck / A914133908 — 1 1 1 1
CaCl2 Acros Organics/ 349615000 — 1.2 5 1 2.05
HEPES Applichem A1069 10 10 10 10 10
Glucose Fluka / 49159 — 5 5 5 5
NMDG Fluka 66930 — — 60 40 35
EGTA Fluka / 03778 20 — — — —
Sorbitol Sigma / S1876 — — — 40 20

Table 4.2: Electrophysiology solutions for hERG CHO cell experiments on the Nanion SyncroPatch 384PE
machine, all solutions are sterile filtered. All hERG CHO cells were suspended in 1/3 extracellular ‘fill chip’
solution + 2/3 Hanks’ Balanced Salt Solution (HBSS).

To ensure the currents we analyse are predominantly IKr, we performed a series of offline post-

processing corrections to remove the leak current Ia
leak and any other currents contaminating the

recording Icontaminating. First, linear leak corrections were applied to all measurements to eliminate the

leak current Ia
leak. Second, E-4031 subtraction was applied to remove the contaminating background

currents Icontaminating. These corrections are described in detail in the rest of this section, as well as

our partially-automated quality control criteria.

4.5.3.1 hERG-specific block subtraction

To eliminate any contaminating voltage-dependent background currents in the measurements,

Icontaminating in Eq (4.32), we measured the full set of nine voltage protocols twice, see Figure 4.11;

once with dimethyl sulfoxide (DMSO) vehicle conditions in which Icontrol
observed in Eq. (4.32) was mea-

sured, and once under the addition of 0.5 µM E-4031, a hERG channel selective blocker with IC50

value .10 nM, so that the leftover current

IE-4031
observed = Icontaminating + Ib

leak. (4.33)

Icontaminating was thought to be endogenous current, i.e. the sum of any native voltage-dependent

ion currents that were present in CHO cells alongside the overexpressed hERG, however we later

found that it was mostly another form of leak current, see the note discussed below. We denoted

the new leak current as Ib
leak, and we assumed the leak current changed over time, hence in general

Ib
leak , Ia

leak.

As shown in Figure 4.11, a period of ∼ 5 min was allowed for the E-4031 block to reach equilibrium,

and multiple hERG screening protocols were applied to allow opening of the hERG channel (Ishii

et al., 2003). All currents shown or used in this chapter are the leak corrected currents measured in

control conditions minus the leak corrected currents that remained after E-4031 addition, which we

assume yields uncontaminated IKr.

Note: later in Lei et al. (2020b), a publication that I led, we discovered that the leftover current in

Eq. (4.33) was due to the presence of the CaF2 crystal for seal enhancement (see Chapter 2), giving
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rise to another form of non-biological leak current. We have shown that most of this leftover current

can be reproduced on a manual patch clamping setup using the same F− containing internal and Ca2+

containing external solutions without any biological cell, and can be eliminated by simply removing

the F− containing solution. This current is what we termed the nonlinear time-dependent leak current

in Lei et al. (2020b). Nevertheless, the post-processing procedure described in this section can still

be used to eliminate most of the unmodelled currents as discussed in Lei et al. (2020b).

4.5.3.2 Leak correction

We use the model in Eq. (4.7) to estimate the leak current Iest.
leak. If we subtract an estimated leak off

both Icontrol
observed and IE-4031

observed then our final IKr is given by

IKr ≈

Leak correction︷               ︸︸               ︷(
Icontrol
observed − Iest. a

leak

)
−

Leak correction︷               ︸︸               ︷(
IE-4031
observed − Iest. b

leak

)︸                                          ︷︷                                          ︸
E-4031 subtraction

, (4.34)

where Iest. a
leak , Iest. b

leak are leak currents estimated using Eq. (4.7). Depending on the protocol, we estimate

the parameters gleak, Eleak in one of two ways; either by using a step between two voltages or by

using a linear ramp, as discussed below.

For the staircase protocol, which was used for model calibration, we used the leak ramp implemented

at the first second of the staircase protocol to estimate the leak current. Figure 4.3 shows the use of

the leak ramp for inferring the leak model parameters; the recorded current during the ramp shows a

reliably good linear relation.

In a similar fashion, for all validation protocols, instead of a linear ramp, a conventional step method

was used. A 20 ms leak-step from −80 mV to −100 mV was used to leak-correct the experimental

data. This method was implemented and performed automatically by the platform we used before

every protocol to correct the recording that followed. However, we noticed that some of these

leak corrections can ‘over-correct’ or ‘under-correct’ the current. For example, IKr should only

be negative when the voltage is below its reversal potential, approximately −85.2 mV, if the leak-

corrected current showed a negative current at voltages substantially larger than the reversal potential,

then we conclude that the automated system had overestimated the leak current. Such over-correction

or under-correction was most noticeable during the highest voltage step during the protocol, where

Ileak was at its maximum. For each validation protocol, we then specified a time-window where

we believe IKr should be almost zero (please refer to the GitHub repository provided at the end of

this chapter for the specified time-window values). To rectify the over- or under-correction, we

re-estimated the leak correction by adding an extra linear leak current of the form g∗leak(V + 80 mV),

where g∗leak was chosen such that the average of the final leak-corrected current during the specified

time-window was zero. Due to the linearity, the final leak correction remains the same form as

Eq. (4.7) but with different parameter values.
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QC name Criterion description

QC1.rseal Check Rseal within [0.1, 1000] GΩ.
QC1.cm Check Cm within [1, 100] pF.
QC1.rseries Check Rseries within [1, 25] MΩ.
QC2.raw Check raw trace recording SNR is over 25 (SNR defined as var(trace) / var(noise)).
QC2.subtracted Check subtracted trace SNR > 25.

QC3.raw
Check 2 sweeps of raw trace recording are similar by comparing

the RMSD of the two sweeps < mean(RMSD to zero of the two sweeps) × 0.2.
QC3.E4031 Check 2 sweeps of E-4031 trace recording are similar (same comparison as QC3.raw).
QC3.subtracted Check 2 sweeps of subtracted trace recording are similar (same comparison as QC3.raw).
QC4.(...) Check Rseal, Cm, Rseries, respectively, before and after E-4031 change (defined as std / mean) < 0.5.

QC5.staircase
Check the maximum current during the second half of the staircase changes by at least 75% of the

raw trace after E-4031 addition.
QC5.1.staircase Check RMSD to zero of staircase protocol changes by at least 50% of the raw trace after E-4031 addition.

QC6.subtracted
Check the first step up to +40 mV, before the staircase, in the subtracted trace is bigger than

−2× estimated noise level.
QC6.1.subtracted Check the first +40 mV during the staircase, with the same criterion as QC6.subtracted.
QC6.2.subtracted Check the second +40 mV during the staircase, with the same criterion as QC6.subtracted.

Table 4.3: A summary of the fully automated quality control criteria for the staircase protocol, QC1–QC6.
RMSD, root-mean-square distance; SNR, signal-to-noise ratio; std, standard deviation; var, variance.

4.5.3.3 Partially automated quality control

After the experiments, we applied a set of criteria as an automated selection process for quality

control of our experimental data. The details of our six criteria are summarised in Table 4.3. As the

first quality control criterion, QC1, we applied a cut-off for seal resistance (Rseal), cell capacitance

(Cm), and series resistance (Rseries) through the whole set of measurements. QC2 required a high SNR

recording, such that our measurements contained enough useful information for model inference.

We also compared the stability of the recordings in QC3, where each protocol consisted of two

measurements recorded in the same cell that must be similar and stable. QC4 required Rseal, Cm, and

Rseries to be stable before and after E-4031 addition. QC5 required that the addition of hERG blocker

E-4031 must reduce a certain amount of the recorded current, to ensure that our recordings consisted

mainly of IKr even before adding the blocker. Finally, over-correction of leak can occur during high

voltage steps, as discussed in Section 4.5.3.2, QC6 ensured that no negative current occurred at

voltages substantially larger than the reversal potential. Note that, QC1 to QC4 are general criteria

that are advocated to be used in all whole cell patch-clamp voltage-clamp experiments, whereas QC5

and QC6 contain prior knowledge of IKr and are tailored to hERG measurements.

Using our automated high-throughput system, we recorded a total of 384 well recordings. Our

automated quality control removed 173 wells, leaving 211 well recordings. We then manually

checked all the recordings, and subsequently removed a further 28 wells that were not similar to

the rest of the 183 cells, six examples are shown in Figure 4.13. We found our manually removed

recordings fall into two main categories, as shown in orange and red; the good recordings (green)

are shown for comparison. For the first category (orange), although they seem to contain IKr, they

were heavily ‘contaminated’ by other signals which were most probably a combination of leak and

endogenous (or nonlinear time-dependent leak) currents. For the second category (red), the recordings

lacked any characteristic dynamics of IKr; for example during the first big repolarising step from

40 mV to −120 mV, the recordings do not show any negative spikes that we would associate with
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hERG opening. None of these were considered to be good recordings of IKr. Therefore our automated

quality control has achieved >86% positive predictive value for selecting the bad recordings. The

machine’s ‘standard’ quality control selects wells mainly based on the Rseal, Cm, and Rseries values,

which were set to the same values we used in our automated QC1 in Table 4.3, and removed only

46 wells (which were all within our 173 discarded wells), i.e. with a <23% positive predictive value.

Our automated quality control software is available online, see Data and Software Availability at the

end of this chapter.

Our mostly-automated quality control was applied only to the staircase calibration protocol. Here,

we further require our validation data to contain high quality validation recordings. We therefore

manually selected 124 cells within our 183 cells that passed our quality control and hence have good

recordings for both calibration and validation protocols; this ensures the quality of the experimental

data used in this chapter. The overall success rate of recording our staircase protocol is 183 of 384

wells and for the full set of protocols is 124 of 384 wells, which can be performed within one hour.

Figure 4.13: A comparison of the recordings that pass the automated quality control and those that we
manually removed. Top panel shows our staircase protocol. Following are three good recordings (green) and
six manually removed recordings (orange/red). We found our manually removed recordings fall into two
main categories, which are the recordings that were heavily ‘contaminated’ by other signals (orange) and the
recordings that lacked any characteristic dynamics of IKr (red).
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4.6 Results of High-Throughput Experiments

4.6.1 High-throughput experimental recordings

Figure 4.14 shows the voltage-clamp recordings measured with the nine different protocols, and the

corresponding voltage protocols. All results shown are the first of the two repeats of our recordings.

Our analysis was repeated for the second of the two repeats to ensure the reproducibility of our

results in the same cells: the intrinsic (within-cell) variability is sufficiently small to be negligible,

see Figure 4.18.

Figure 4.14A shows the staircase protocol (black) and the corresponding experimental recordings

(blue). The middle panel shows the raw current recording of a single cell; the bottom panel shows the

normalised current recordings from all 124 wells that passed quality control. Normalisation is applied

for visual comparison only, as each hERG-transfected CHO cell is expected to have a different total

conductance hence giving a different magnitude of the current recorded. Currents are normalised by

scaling them to minimise the absolute difference between each trace and a reference trace (middle

panel). Since the reference trace is used only to normalise other traces for visualisation, and is not

used in model fitting, we simply picked a representative trace from our data that had reasonably low

noise. Our recordings show a very similar result to the IKr simulation shown in Figure 4.2, and the

simulated result used parameters calculated/fitted completely independently by Beattie et al. (2018).

Figure 4.14B–I show the recordings of the other eight validation protocols from the same cells. The

activation step in Figure 4.14D recorded a typical IKr response, where the step down of voltage

to −40 mV largely opens the channels. Figure 4.14G–I also shows typical IKr responses to the

action-potential clamp at different pacing frequencies, where IKr is active during repolarisation of

the action potential. Also note the sharp opening of IKr at the upstroke which changes with pacing

frequencies and increases dramatically but very consistently across all the recorded cells.

4.6.2 Individual cell fitting and validation

Figure 4.15 shows the same voltage-clamp recordings (blue) in Figure 4.14, measured under the nine

different protocols (black), together with model fitting and validation results. All recordings shown

were performed on a single cell. The mathematical model, shown as red lines, is fitted only to the

data recorded under the staircase protocol that is shown in Figure 4.15A. The result of the fitting for

a single cell is shown in the middle panel of Figure 4.15A, demonstrating an excellent fit between

experimental measurement and simulated current. The inferred parameters are shown and studied in

detail in the next three sections.

In Figure 4.15B–I, we show the results of the validation predictions under eight other protocols. We

validated our trained model by testing its ability to predict independent experimental outcomes under

different protocols, which were measured in the same cell. All validation predictions were performed

by using the inferred parameters in the fit to the staircase protocol (Figure 4.15A) to simulate the

other eight protocols (Figure 4.15B–I). The predictions of all the protocols match very well to the

experimental data, with the simulated currents giving a close match to the experimental recordings.
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Figure 4.14: Whole-cell patch-clamp voltage-clamp recordings under nine different protocols which were all
measured in each cell. (A) Shows the staircase protocol (top panel) in black and the corresponding recording
on a single cell (middle panel) and normalised recordings from all 124/384 wells that passed quality control
(bottom panel) in blue. Conductance normalisation was done by multiplying each current by a scaling factor
to minimise the absolute difference between each trace and a reference trace (middle panel). (B)–(I) The eight
different protocols used as validation of the model calibration. All experimental recordings, both the single cell
(middle) and 124 cells (bottom), are shown in blue, which were measured under the protocol (black) shown in
the panels immediately above. In (B) and (C), Validation #1 and #2 show the I-V relations extracted from the
currents.

The physiologically-inspired voltage-clamp protocols (Figure 4.15E–I) mimic the membrane voltage

of the cardiac action potential at normal conditions at different beating rate and EAD/DAD-like

conditions. The ability to predict the current response under these physiologically-inspired voltage-

clamp protocols is particularly important for use in physiological or pharmacological studies. This

shows the reliability of the hERG ion-channel model predictions at different physiological conditions,

for example, when it is embedded in a whole-cell cardiac model for further predictions.

In Figure 4.16 we present our model fitting and validation results for all 124 cells, compared against
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Figure 4.15: Whole-cell patch-clamp voltage-clamp recordings under nine different protocols which were
measured on a single cell, and the model fitting and validation results. (A) Shows the staircase protocol (black)
and the corresponding recording (blue). The mathematical model is calibrated using this recorded data, and
shown as a red line. (B)–(I) The eight different protocols used as validation of the calibrated model. All
experimental recordings are shown in blue, which were measured under the protocol (black) shown in the
panels immediately above, and the validation predictions of the model are shown in red. Zoomed-in image of
the green shaded regions are shown underneath each panel to reveal the details of the spikes, in which our
model also shows excellent predictions of the faster timescale behaviour. In (B) and (C), Validation #1 and #2
show the I-V relations extracted from the currents.

the experimental recordings measured under the nine different protocols. We applied the same fitting

and validation procedure, as used for the single cell discussed above, to all 124 cell measurements.

To visualise the variability in only hERG kinetics (and not maximum conductance), we plotted all

currents normalised as described in the previous section.

We quantified the fits and predictions using RRMSE defined as the root-mean-square error between

the model simulation and the experimental data, divided by the root-mean-square distance of the data
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Figure 4.16: Normalised whole-cell patch-clamp voltage-clamp recordings for 124 cells under nine different
protocols, and the model fitting and validation results. All currents are normalised by scaling them to minimise
the absolute difference between each trace and a reference trace. (A)–(I) The staircase protocol which is
used as the calibration protocol, and a sequence of validation protocols. All the model calibration results and
validation predictions are shown in the top panels (red), and are compared against the experimental recordings
shown in the bottom panels (blue). Magnifications of the green shaded regions are shown underneath each
panel to reveal the details of the spikes, in which our models show extraordinarily good predictions to the
details. The normalised current for all protocols are shown except for the activation I-V protocol and the
steady-state inactivation I-V protocol where the summary statistic I-V relationships are shown.

to a zero current trace:

RRMSE =

√∑(
Imodel
Kr − Idata

Kr

)2
/∑(

Idata
Kr

)2
. (4.35)

Using this RRMSE quantification, the difference in the absolute size of the current across cells due

to varying conductance is eliminated, and RRMSE scores are comparable between cells. Figure 4.17

shows the RRMSE histograms for all cells and for all of the protocols. Markers indicate the best (∗),

median (‡) and 90th percentile (#) RRMSE values, and corresponding raw traces are shown in the three

panels above. The diamond marker q indicates the reference cell shown in Figures 4.14 and 4.15.
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Figure 4.17: The relative root-mean-square error (RRMSE, given by Eq. (4.35)) histograms for all protocols.
Each histogram represents the same 124 cells with a different protocol and relative root-mean-square error
(RRMSE) each time. Markers indicate the best (∗), median (‡) and 90th percentile (#) RRMSE values, and
diamond marker (q) indicates the error for the reference traces shown in Figures 4.14 and 4.15. (A)–(I) Show
the staircase protocol, and a sequence of validation protocols. For each protocol, the raw traces with the best,
median and 90th percentile RRMSE values, for both the model (red) and data (blue) are shown, with the
voltage clamp above. Note that the currents are shown on different scales, to reveal the details of the traces.
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Figure 4.18: Cell-specific model parameters at around 25 ◦C. (Top) The inferred parameter values shown here
are obtained from the staircase protocol calibration and are also the parameters used in the model predictions
in Figure 4.16. It also shows the manual patch obtained parameters (orange), measured at around 22 ◦C, from
Beattie et al. (2018). The inferred kinetic parameter values from the automated high-throughput system are
broadly consistent with the manual patch measurements. (Bottom) A comparison of the two repeats of the
measurements, using the same analysing method. It shows that our results are reproducible in the same cells,
and the intrinsic (within-cell) variability is relatively small compared to extrinsic (between-cell) variability.

There are some small discrepancies in the predictions, for example in Figure 4.17B in the 90th

percentile predictions. But overall these results demonstrate that all our 124 models make very good

predictions for the recorded current kinetics.

Next, we qualitatively inspect the variability in the hERG kinetics measurements. Since we measured

the IKr using exactly the same experimental set-up for each cell, we can clearly see the variability

between measurements in all of the recordings, as illustrated in Figure 4.16. Different protocols

demonstrate different levels of variation. It is clear that, amongst the six protocols, the staircase

protocol and the two I-V protocols show the strongest variation between measurements.

To investigate this further, we have used our mathematical model to study the variability in the

parameter values that could drive the observed variability in the outputs. Figure 4.18 shows the

inferred parameter values which are used in the model predictions in Figure 4.16. Since we assume

all cells share the same mechanistic model underlying the hERG currents our inferred cell-specific

model parameters capture the cell-to-cell variability, or rather experiment-to-experiment variability.

In Figure 4.18, our inferred parameters are plotted against manual patch parameters (shown as orange

dots/red squares), measured at a slightly lower (room) temperature, from Beattie et al. (2018); our

identified parameters are broadly in alignment with manual patch results. This agreement gives us
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further confidence that our high-throughput method is reproducible, and results are meaningful. We

can also see that there is more variability in some parameters than others, also seen in the previous

study (Beattie et al., 2018). In particular, p1, p3, and p6 show stronger variability, which vary over an

order of magnitude while the others vary only within an order of magnitude. Conductance gKr also

varies significantly, but this might be expected given different expression levels for individual cells.

4.6.3 Well-to-well variability characterisation

We applied the hierarchical Bayesian model to analyse the variability within the experimental

recordings and correlations between inferred well-to-well parameter sets. The result of applying our

hierarchical model is shown in Figure 4.19. The measurement uncertainty for the parameters of each

individual well is shown with a marginal posterior distribution — the coloured histograms. Most

of the parameters give a narrow credible interval, which reinforces our certainty in the information

content of the calibration protocol. Many of the distributions of the individual wells overlap —

that is, we cannot distinguish between the two sets of parameters given our uncertainty in them.

However, some of the individual distributions are distinct from each other, demonstrating considerable

variability between wells.

Figure 4.19: The marginal distributions from the hierarchical Bayesian model for all model parameters.
Left y-axis: Individual histograms — the normalised marginals (probability densities) for each parameter
in each well, with different colours representing the 124 individual wells. Each of them show a narrow
distribution which implies good confidence in our inferred parameters for the individual well. Right y-axis:
Red distribution — the marginal posterior predictive distributions across-cells p(θ | . . .), which are assumed to
follow a multivariate log-normal distribution for each parameter are shown as red curves. They are the inferred
underlying distribution between cells for each of the parameters.

The power of the hierarchical Bayesian model can then be used to summarise and capture the

experiment-to-experiment variability. The hyperparameters of the model describe both the mean µ
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gKr (pS) p1 (s−1) p2 (V−1) p3 (s−1) p4 (V−1) p5 (s−1) p6 (V−1) p7 (s−1) p8 (V−1)

Mean 3.23 × 104 0.0948 86.9 0.0298 46.9 104 21.9 8.05 29.9

95th %ile (mean)
3.00 × 104 0.0843 84.5 0.0276 46.0 100 20.8 7.77 29.5
3.48 × 104 0.106 89.3 0.0323 47.8 107 23.1 8.34 30.3

95th %ile (exp)
1.42 × 104 0.0259 63.6 0.0124 38.0 70.6 12.0 5.43 25.9
7.36 × 104 0.346 119 0.0718 57.8 152 40.1 11.9 34.5

Table 4.4: The mean values of the model parameters model parameters µ in Eq. (4.19). The two set of 95th

percentiles are the 95% credible intervals of (mean) the uncertainty of the mean parameter vector µ; and (exp)
the posterior predictive distribution.
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Figure 4.20: Quantile-quantile (Q-Q; left) and probability-probability (P-P; right) plots of the 124 individual
experiments and our posterior predictive distribution. For each parameter, (left) the quantiles of the marginal
posterior predictive distribution (theoretical quantiles) are plotted against the quantiles of the posterior mean
of the 124 cells (sample quantiles); (right) the cumulative distribution of the marginal posterior predictive
distribution (theoretical CDF) are plotted against the cumulative distribution of the posterior mean of the 124
cells (empirical CDF). It shows that the posterior predictive distribution is an appropriate distribution for the
data.

and (co-)variance Σ of parameter sets across wells, with experimental uncertainty taken into account.

We estimated this posterior predictive distribution in Eq. (4.28) using the samples of hyperparameters

(the mean and covariance matrix of the individual cell’s parameters), and its marginal distributions

are shown for each parameter as the red curves in Figure 4.19. This distribution can be used to predict

the likelihood and variability of parameter sets from further wells in future experiments. The mean

values of the samples of µ (which is equivalent to the mean of the posterior predictive distribution)

and its 95% credible intervals are provided in Table 4.4.

We quantify the goodness of the posterior predictive distribution from our hierarchical Bayesian

model, compared to the 124 individual experiments, by means of a quantile-quantile (Q-Q) plot and

a probability-probability (P-P) plot. The Q-Q (or P-P) plot is a graphical method for comparing two

probability distributions, in our case the 124 individual experiments and our posterior predictive

distribution p(θ | · · · ), by plotting their quantiles (or cumulative distributions) against each other.

Figure 4.20 shows the Q-Q (left) and P-P (right) plots. For each parameter, the marginal posterior
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predictive distributions are plotted against the posterior mean of the 124 cells. We applied linear

regression, shown as orange lines, and they all lie very close to the line of identity (grey dashed lines).

These analyses support our results and suggest that our posterior predictive distribution, together

with the log-normal distribution assumption, is an appropriate distribution for the data.

Figure 4.21: The inferred correlation in model parameters across experimental wells. All parameters shown
here are natural log-transformed. The posterior mean parameters (θ) of each of the 124 individual wells are
shown in grey (dots and histograms). Lower triangle (blue): The 95% credible region boundary for the
distribution of parameters across wells. Each credible region ellipse is reconstructed from one sample of
the µ, Σ across-cell distribution parameters from the MCMC chain of size 105, for clarity only 200 samples
are shown here. Simulated voltage error offset (described in the Discussion) is shown as red dots. Diagonal
(green): The sampled posterior probability density functions before integration to give p(θ | · · · ), shown in
detail in Figure 4.19. Upper triangle (orange): The marginal histograms for each entry of the correlation
matrix defined by Eq. (4.27). The common assumption of independence (correlation of zero) is shown as
black vertical lines for comparison. The shadings in the background indicate how these parameters relate to
the model structure: the orange box contains the gates a in model, green box contains gate r, and grey relates
to the conductance.
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Finally, we used the hierarchical Bayesian model to investigate the correlation between model

parameters across different wells. In the sampled hyperparameters, the covariance matrix Σ reveals

any correlation between our model parameters. The typical assumption concerning the variability of

parameters is that they are independent, i.e. in the covariance matrix all entries except the diagonal

are zero. In the upper triangle (orange) of Figure 4.21, we compare our inferred correlation between

parameters (calculated using Eq. (4.27)) with this common assumption (black vertical dashed lines).

It is obvious that there are many entries where zero is outside our credible interval, which implies

that the model parameters are correlated. Therefore the independence assumption is not supported by

our findings, and we take a closer look at the results below.

To visualise the correlation between parameters better, the 95% credible regions for each pair of

parameters are shown in the lower triangle (blue) of Figure 4.21; plotted against the scatter plot

of the 124 cells individual posterior mean parameters (shown on a log-scale). Each blue ellipse is

reconstructed from a sample of hyperparameters, where the contour of the 95% credible region of

the two-variate marginal distribution defined by the hyperparameter sample is shown; capturing

most of our individual posterior mean parameters appropriately. In this plot, a perfect circle implies

there is no correlation between the pair of parameters. However, we can clearly see that most of

our pairwise parameters show an elliptical shape, which means some degree of correlation between

the pairwise parameters exists. This strongly suggests that correlations between parameters are

embedded in the experiment-to-experiment variability. Finally to ensure our observed correlations

are biophysically relevant, rather than a sign of identifiability problems, Figure 4.22 shows how

cell-specific parameters make accurate cell-specific predictions. We further discuss explanations and

hypotheses for such observed correlations in the next section.

Figure 4.22: A comparison of fits and predictions for cells B20 (purple) and C17 (brown). (A) Fits from the
posterior (50 samples) from the two cells and corresponding experimental data under the staircase calibration
protocol, with corresponding cell-specific data shown in the background. Note that although there are 50
fits plotted, these appear to be a single line for each cell as the parameter samples are so close that the
forward simulations are indistinguishable at this scale. (B) Predictions based on 50 samples of the cell-specific
posteriors under the activation I-V protocol (Validation #1).
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4.7 Discussion
In this chapter, we have developed a short, high information-content staircase voltage-clamp protocol

for IKr that can be applied in automated high-throughput patch-clamp systems. We then used a

mathematical model to characterise channel kinetics by fitting its parameters to recordings made

under this new protocol. In this section we first discuss the benefits of using this novel approach

to construct trustworthy models of ion channel kinetics as compared to the conventional methods.

The novel approach developed in this chapter also enables us to study the ion channel kinetics

under different conditions, such as mutations, pharmaceutical compounds, and different temperatures

(as we demonstrate in the next chapter). Second, we discuss how these high-throughput rapid

characterisation experiments allow us to suggest reasons for the observed variability, and lead us to

investigate the origin of the observed variability in Chapter 6.

4.7.1 High-throughput rapid characterisation of ion channel currents

Here, we no longer use I-V or τ-V relations to characterise hERG kinetics, but rather we use a

mechanistic model and its parameterisation to capture our knowledge of channel kinetics. A different

design of voltage-clamp protocol, which is short and able to elicit a high information-content signal

of hERG current, was used to calibrate the hERG kinetics model. The benefits of this approach are

threefold. First, current ‘rundown’ during the protocol has less of an effect over shorter experiments

(10s seconds), as compared to conventional I-V and τ-V protocols (10s minutes), hence it is much

easier to obtain a measurement that remains stable. Second, given its short duration, it is easy

to repeat the measurement, to examine within-cell reproducibility/variability. Third, our staircase

protocol can be used to rapidly create cell-specific models of kinetics (which is much harder to do

using the more time-consuming conventional I-V and τ-V protocols).

We have shown that our 15-second staircase protocol can be performed in an automated high-

throughput system. We have found that each of the resulting 124 models is consistent with previous

manual patch clamp results (Beattie et al., 2018, limited to nine cells), implying that these methods

are reproducible. We can now easily produce large data sets for further analysis, which is usually

difficult, if not impossible, to achieve with manual patch clamp. The predictions of the cell-specific

models are not perfect, as we examined in Figure 4.17, and there may be room for improvement

in terms of the model structure and further optimisation of the calibration protocol. But we are

able to calibrate our model to the extent that it can replicate both experimental training data and

predict validation data very well (Figure 4.15). Our models can predict the current response to the

physiologically-relevant action potential protocols, demonstrating that our IKr models could be useful

in predicting cardiac electrical activity in both healthy and arrhythmic situations (Beattie et al., 2018).

This provides assurance that our cell-specific models, which are constructed in a high-throughput

manner, have great potential for future uses.

With our 124 cell-specific hERG models, we are able to study experiment-to-experiment variability

in the hERG channel. Such experiment-to-experiment variability is captured using our hierarchical
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Figure 4.23: (Left) An example of the current-voltage relationship plotted for the last ramp in the staircase
protocol, and how it is used to estimate the EK reversal potential value for IKr in one well. (Right) Histogram
of EK values estimated using the reversal ramp technique. The EK values here were estimated from the same
124 wells used in the main results. The dashed orange vertical line shows the expected EK calculated directly
from temperature and concentrations using the Nernst equation (Eq. (2.8)).

Bayesian model, where the posterior predictive distribution is constructed and describes the under-

lying variability of the parameters (Figure 4.19). Instead of using a series of I-V and τ-V curves,

here we evaluate the variability of the observed hERG channel kinetics using mathematical model

parameters. The variability in the parameter values predicts the observed differences in the channel

kinetics, see also Figure 4.22. In addition, we can use our posterior predictive distribution to predict

what might happen in future experiments, based on the observed experiments.

4.7.2 Sources of variability

We have successfully quantified the variability between wells via our inferred model parameters.

However, the underlying cause of this variability is an open question. There are possibilities at two

extremes. One is that the variability is truly cell to cell, and ion channel kinetics do vary because of

different intracellular conditions, one may speculate in terms of gene expression, the presence of

subunits, phosphorylation states, or suchlike. The other possibility is that ion channel kinetics are

precisely identical in each cell, but there are some experimental artefacts, varying between wells,

that are causing the observed variability in parameters from each well. Below we discuss hints in our

results as to which of these extremes is the leading cause of variability, and we investigate this in

detail in Chapter 6.

As shown in Figure 4.3, the 100 ms reversal ramp at 14.41 s was introduced to estimate experimentally

the hERG reversal potential E j
K in each of the j wells, for details see the rationale of the staircase

protocol in Section 4.5. In Figure 4.23, we show an example E j
K derivation using the reversal ramp

and a histogram of E j
K values estimated from the 124 wells.

Our obtained histogram of E j
K values is distributed close to our theoretical EK from the Nernst

equation (Eq. (2.8)), with a standard deviation of 1.36 mV. Since all of our measurements were

performed on one 384 well plate, they shared the same extra- and intra-cellular solutions and were

recorded at (almost) the same temperature. We would therefore expect the real variability in reversal

potential to be much smaller than this observed variability.
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A hypothesis then, is that the reversal potential EK really occurs at the Nernst calculated value, and

observed deviations from this inferred from the reversal ramp provide an estimate for a ‘voltage error’

in the applied voltage clamp: ∆V j = E j
K − EK, perhaps due to an imperfect compensations of other

external effects, such as junction potentials and electrode offsets (see details in Chapter 6). We test

this hypothesis via the model before we further investigate this in detail in Chapter 6: by applying a

staircase protocol with voltage error offsets of ∆V j estimated from each of the 124 cells, generating

synthetic data from these voltage clamps, and then re-fitting parameters.

Figure 4.21 (lower triangle) shows the results of our voltage error offset simulations in red dots. If

there was an error in the applied voltage clamp in each well, then we would expect to see parameters

appearing to co-vary along the red lines (made up of individual dots/fits) in Figure 4.21. The

observed primary parameter covariance directions and magnitudes from this procedure (red lines)

align suspiciously well with much of the observed variability in the experiments (blue ellipses

inferred from grey dots).

This simple test suggests that the observed variability in parameters may be due to well-well variability

in patch-clamp artefacts rather than cell-cell variability in ion channel kinetics. In Chapter 6, we

build a more complete mathematical model of such patch-clamp artefacts to investigate in detail the

causes of the observed variability. We should also note that despite patch-clamp artefacts being an

apparent cause of parameter variability, there are not necessarily larger artefacts in this automated

system than might be expected in manual patch clamp.

4.8 Conclusion
In this chapter, we have taken a first step in moving away from the conventional approaches and

designed a 15-second staircase protocol to study and characterise hERG channel kinetics. We first

tested the experimental design through synthetic data studies. We then demonstrated the feasibility

and practicality of applying the design on an automated high-throughput system. We defined and

applied quality control criteria, and selected 124 cell measurements for constructing hERG models.

Our 124 cell-specific variants of the hERG model that are calibrated using the staircase protocol

are able to predict eight other validation protocols with a high accuracy, including physiologically-

inspired action potential-like voltage clamps. Using a hierarchical Bayesian modelling approach,

we provide a quantitative description of the variability and uncertainty within our 124 cell-specific

models.

With our rapid characterisation techniques and the hierarchical Bayesian modelling approach, we have

opened a new gateway to study parameter correlations between cells and investigate experimental

variability. We have found that some model parameters are strongly cross-correlated, but not all. This

result may hint at the origin of the variability, which we investigate in detail in Chapter 6.

In the next chapter, Chapter 5, we directly apply our methods developed in this chapter to study

the temperature dependence of the hERG kinetics which are commonly represented with either

Q10 coefficients or an Eyring relationship. However, a detailed comparison and assessment of the

applicability of these representations has not yet been undertaken.
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4.9 Data and Software Availability
Data and software (GitHub repository):

https://github.com/CardiacModelling/hERGRapidCharacterisation

Staircase protocol in time series format:

https://github.com/CardiacModelling/hERGRapidCharacterisation/blob/master/

protocol-time-series/protocol-staircaseramp.csv

Automated quality control software:

https://github.com/CardiacModelling/hERGRapidCharacterisation/blob/master/

lib/hergqc.py
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Chapter 5

Temperature Dependence of hERG
Kinetics

This chapter was published as: Lei, C. L., Clerx, M., Beattie, K. A., Melgari, D., Hancox, J. C.,
Gavaghan, D. J., Polonchuk, L., Wang, K., and Mirams, G. R. (2019a). Rapid characterization of
hERG channel kinetics II: temperature dependence. Biophysical Journal, 117(12):2455–2470.

Contributions: I assisted in designing the study, carried out the experiments, designed the compu-

tational analysis, wrote the simulation codes, and performed all the analysis.

Overview:

In the previous two chapters, we looked at reparameterising an action potential model with a conventional

approach and constructing a mathematical model of an ion channel using experiments recorded at room

temperature. However, we are mostly interested in responses at physiological temperature, and ion channel

behaviour can depend strongly on temperature generally, with faster kinetics at physiological temperatures

leading to considerable changes in currents relative to room temperature. Commonly, these temperature-

dependent changes in voltage-dependent ion channel kinetics (rates of opening, closing, inactivating and

recovery) are commonly represented with Q10 coefficients or an Eyring relationship. In this chapter we assess

the validity of these representations by characterising channel kinetics at multiple temperatures. Following on

from Chapter 4, we focus on the human Ether-à-go-go-Related Gene (hERG) channel, which is important in

drug safety assessment and commonly screened at room temperature, so that results require extrapolation to

physiological temperature. In Chapter 4 we established a reliable method for high-throughput characterisation

of hERG1a (KV11.1) kinetics, using a 15-second information-rich protocol. In this chapter, we use this

protocol to study the temperature dependence of hERG kinetics in the same cells, Chinese Hamster Ovary

(CHO) cells over-expressing hERG1a, on the Nanion SyncroPatch 384PE. We characterise the temperature

dependence of hERG gating by fitting the parameters of a mathematical model of hERG kinetics to data

obtained at five distinct temperatures between 25 and 37 ◦C, and validate the models using different protocols.

Our models reveal that activation is far more temperature sensitive than inactivation. We show that the

97



Temperature Dependence of hERG Kinetics

temperature dependence of the kinetic parameters is not represented well by Q10 coefficients: it broadly

follows a generalised, but not the standardly-used, Eyring relationship. We also demonstrate that experimental

estimates of Q10 coefficients are protocol-dependent, which can be error-prone and misleading if they are

used without extra care. Our results show that a direct fit using our 15-second protocol best represents hERG

kinetics at any given temperature, whilst the Generalised Eyring theory is the best alternative if no such data

are available.

5.1 Introduction
In the previous chapter, we used experimental data recorded at room temperature to construct a model

of an ion channel, as often room temperature experiments are easier to perform and have higher

success rates. However, ion channel behaviour can depend strongly on temperature (Dhaka et al.,

2006; Yang and Zheng, 2014), with physiological temperatures typically leading to faster kinetics

and different magnitudes of current than at room temperature, see for example (Vandenberg et al.,

2006, Figure 1). These temperature-dependent changes in voltage-dependent ion channel kinetics,

e.g. rates of activation, deactivation, inactivation and recovery, are commonly represented with either

Q10 coefficients (Hodgkin et al., 1952; Collins and Rojas, 1982; Zhou et al., 1998; Vandenberg et al.,

2006; Li et al., 2016; Mauerhöfer and Bauer, 2016) or an Eyring relationship (Tsien and Noble, 1969;

Hille, 2001; Irvine et al., 1999; Fink et al., 2008).

In this chapter, we characterise channel kinetics at multiple temperatures, and test the validity of Q10

and Eyring rate theories by testing whether the kinetic parameters follow the trends that these theories

assume. We study the temperature dependence of the human Ether-à-go-go-Related Gene (hERG)

channel which is important in drug safety assessment (Friedrichs et al., 2005) and has been shown to

have temperature-dependent kinetics (Zhou et al., 1998; Vandenberg et al., 2006; Mauerhöfer and

Bauer, 2016).

Previous studies, Zhou et al. (1998) and Vandenberg et al. (2006) measured hERG1a temperature

dependence, and compared room and physiological temperature kinetics under typical activation and

inactivation current-voltage (I-V) protocols. A similar study with hERG1a/1b was performed more

recently by Mauerhöfer and Bauer (2016). Unless otherwise specified, we refer to hERG1a simply

as ‘hERG’ in the remainder of this chapter. Previous studies have consistently reported that hERG

kinetics are highly temperature-sensitive, something that is perhaps a property of potassium channels

more widely (Yang and Zheng, 2014).

Furthermore, drug screening data is often collected at room temperature, and requires extrapolation

to physiological temperature. Temperature extrapolation relies heavily on the accuracy of models of

temperature-dependence. Some effort has been made to model temperature effects on hERG kinetics

based upon literature data (Zhou et al., 1998; Vandenberg et al., 2006); for example Fink et al. (2008)

attempted to use an Eyring relationship and Li et al. (2016) used Q10 coefficients. However, a detailed

comparison and assessment of the applicability of these representations has not yet been reported.

In this chapter, we study and model the temperature dependence of hERG kinetics using a cell-specific

fitting technique, for a range of room-to-physiological temperatures. We employ the staircase protocol
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developed in Chapter 4. We use the same mechanistic model and parameterise it to characterise

hERG kinetics at multiple temperatures. We then compare whether the estimated parameters as a

function of temperature follow the temperature dependence of rate theories.

5.2 Commonly-used temperature adjustments
for kinetic rates

In this section we discuss commonly-used temperature adjustments/models for kinetic rates in voltage-

gated ion channels — the Eyring relationship and the Q10 coefficient — and the consequences of

these theories for the temperature-dependence of parameters within an ion channel model.

5.2.1 Models of transition rates and their temperature dependence

Mathematical ion channel models are often expressed as a Hodgkin-Huxley model (Hodgkin and

Huxley, 1952a) or a Markov state model (Fink and Noble, 2009), and both have transition rates

(which we will call k) between the channel gates/states, as introduced in Chapter 2 and used in

Chapter 4. From the derivation in Section 2.3.2.6, we expect the rate of transition between any two

states to follow

k = A · exp (BV) , (5.1)

where A, B are model parameters (constants). In this chapter, we use the terms ‘Parameter A’ and

‘Parameter B’ to refer to A and B in Eq. (5.1).

5.2.1.1 Eyring formulations

The temperature dependence of channel transitions is embodied in the Eyring equation. The original

Eyring equation was derived from basic thermodynamics and statistical mechanics, following from

the concepts of Gibbs free energy, entropy and enthalpy (Eyring, 1935). The typical form used to

model voltage-dependent transition rates previously (Tsien and Noble, 1969; Hille, 2001; Irvine

et al., 1999; Fink et al., 2008) is

kTypicalEyring =
kB

h
· T · exp

(
∆S
R
−

∆H
R

1
T
+

zeF
R

1
T

V
)

, (5.2)

with physical constants: kB the Boltzmann constant, R the ideal gas constant, h the Planck constant,

F the Faraday constant, T the absolute temperature, and V the transmembrane voltage. The following

are unknowns (or ‘kinetic parameters’) to be determined: ∆S the entropy difference, ∆H the enthalpy

difference, ze the effective valency of the structure undergoing conformational change. A more

generalised Eyring relationship can be given by

kGeneralisedEyring =
kB

h
· T · exp

(
∆S
R
−

∆H
R

1
T
+

zeF
R

1
T

V + DV
)

, (5.3)

where D is a coefficient that describes a temperature-independent effect of voltage on the transition

rate. The Generalised Eyring relationship is commonly used in the field of manufacturing engineering

and battery engineering (for example Bhattacharyya and Soejoeti, 1981; Escobar and Meeker, 2006;
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Redondo-Iglesias et al., 2017, 2018), although to the best of our knowledge it has not been directly

applied to ion channel modelling.

Without loss of generality, we can rewrite (reparameterise) Eq. (5.3), using unknowns aGE, bGE, cGE

and dGE, absorbing all other constants into these four new parameters, as

kGeneralisedEyring = aGE · T · exp
(
−bGE · T−1

)
· exp

((
cGE · T−1 + dGE

)
V
)

, (5.4)

where aGE = (kB/h) exp(∆S /R), bGE = ∆H/R, cGE = (zeF)/R, and dGE = D. By comparing

Eq. (5.1) and Eq. (5.4), then we have

A = aGE · T · exp
(
−bGE · T−1

)
, (5.5)

ln(A/T ) = ln(aGE) − bGE · T−1, (5.6)

and

B = cGE · T−1 + dGE. (5.7)

Therefore, plotting ln(A/T ) against T−1 should yield a linear relationship if the Generalised Eyring

relationship holds. Similarly, from Eq. (5.7), we see that plotting B against T−1 yields a linear

relationship for the Generalised Eyring relationship; or a proportional relationship for the Typical

Eyring relationship (dGE = 0). We refer to a plot of ln(A/T ) or B as a function of T−1 as an ‘Eyring

plot’.

5.2.1.2 Q10 coefficients

Another approach that is commonly used to describe temperature dependence in biological and

chemical processes is the use of Q10 coefficients. The Q10 relationship is an empirical expression

(Běhrádek, 1930), which assumes reaction rates increase exponentially with temperature, and has

been applied extensively to ion channel kinetics from Hodgkin and Huxley’s work to the present day

(Hodgkin et al., 1952; Collins and Rojas, 1982; Zhou et al., 1998; Vandenberg et al., 2006; Li et al.,

2016; Mauerhöfer and Bauer, 2016). Using Q10 coefficients, we can express the transition rates as

kQ10 = Q(T−Tref)/(10◦C)
10 · α · exp (βV) . (5.8)

Here, α and β are parameters for the rates, and Tref is the reference temperature for the extrapolation.

A Q10 coefficient is, by definition, calculated using the ratio of the rates at Tref + 10◦C and Tref.

Comparing Eq. (5.1) and Eq. (5.8), we have

ln A = aQ10T + cQ10, (5.9)

ln(A/T ) =
aQ10

T−1 + ln(T−1) + cQ10, (5.10)

and

B = β, (5.11)

where aQ10 = (ln Q10)/10◦C, cQ10 = lnα − (Tref ln Q10)/10◦C. Therefore, if the Q10 formulation

is accurate, then plotting ln(A/T ) against T−1 should yield a nonlinear relationship, and B against

T−1 is a horizontal line.
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5.2.2 A theoretical comparison of the Eyring formulation and Q10

coefficient

We now compare the Generalised Eyring relationship (Eq. (5.3)), the Typical Eyring relationship

(Eq. (5.2)) and the Q10 expression (Eq. (5.8)). Note that the Eyring relationships have been related

to the Q10 expression (Tsien and Noble, 1969; Ito et al., 2015) to interpret the Q10 coefficient

as the change of entropy and enthalpy. However, in this chapter, we treat the two formulations

independently.

For parameter A in Eq. (5.1), under the Eyring plot where we plot ln(A/T ) (on the y-axis) against

1/T (x-axis), both the Generalised Eyring and Typical Eyring relationships (Eq. (5.6)) give a straight

line, y = mx + c; while the Q10 expression (Eq. (5.10)) becomes y = a/x + ln(x) + b which is not.

This difference could be used to tell which theory is correct, but within our temperature regime the

Q10 expression on the Eyring plot gives a curve that is indistinguishable, in practical terms, from a

linear Eyring relationship, as shown in the top of Figure 5.1.

Therefore the only practically measurable difference between the proposed temperature relationships

is in the B parameters (which set the voltage dependence of the transition rate) in Eq. (5.1). The

Generalised Eyring relationship implies that B has a linear relationship with T−1; the Typical Eyring

relationship restricts B to be directly proportional to T−1; and under the Q10 coefficient formulation,
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Figure 5.1: An Eyring plot illustrating the difference between a Generalised Eyring equation (Eq. (5.3)), a
Typical Eyring equation (Eq. (5.2)), and a Q10 formulation (Eq. (5.8)). This plot extends from −10 ◦C to 50 ◦C
to highlight the differences between the three formulations. The green shaded region marks the temperature
range of interest, from 22–37 ◦C. The Generalised Eyring relationship shown has [ln aGE, bGE, cGE, dGE] = [40,
1000, 3000, -70], and the Typical Eyring and Q10 relationships are the best fits to the generated Generalised
Eyring relationship. Both Eyring formulations give the same straight line dependence for ln(A/T ) and even
the nonlinear Q10 formulation is indistinguishable (for practical purposes) within the relevant temperature
range. However, the three formulations can display very different behaviour when examining the temperature
dependence of the voltage-dependence parameter B: the Generalised Eyring relationship leads to any straight
line; the Typical Eyring relationship gives straight lines passing through the origin; and the Q10 formulation
can be only horizontal lines in the Eyring plot.
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B is a constant that does not depend on temperature. These differences are illustrated in the right

hand panel of Figure 5.1.

The Typical Eyring relationship is a special case of the Generalised Eyring relationship, and therefore

the Typical Eyring relationship would hold if D = 0 were obtained when fitting the Generalised

Eyring relationship: it will become clear that this is not the case for our data. We hence compare the

Generalised Eyring relationship and the Q10 formulation in the rest of this chapter.

There have been previous temperature-dependent hERG modelling studies. Fink et al. (2008)

expressed hERG kinetics using the Typical Eyring relationship (Eq. (5.2)), but its parameters were

derived from experimentally estimated Q10 values in Vandenberg et al. (2006) yielding an incomplete

form of the Eyring relationship based on Q10 values. Li et al. (2016) used a Q10 formulation

(Eq. (5.8)) to model temperature dependence of hERG kinetics for simplicity, but did not investigate

to what extent this captured temperature-dependent changes in the kinetics.

Modelling temperature effects in ion channel kinetics not only has applications in cardiac safety

pharmacology, it is also commonly used in action potential modelling more generally. Many cardiac

action potential models (Greenstein and Winslow, 2002; Iyer et al., 2004; Tanskanen et al., 2005;

Sampson et al., 2010) adapted the Mazhari et al. (2001) hERG model which used Q10 values

from Zhou et al. (1998) to extrapolate room temperature recordings to physiological temperature.

These extrapolations cause considerable changes to rates, often exceeding changes introduced when

modelling diseases or other conditions (Clerx, 2018). Similarly, the Christé et al. (2008) hERG

model was based on measurements at room temperature and extrapolated to 37 ◦C using Q10 values

from Vandenberg et al. (2006). Within action potential models, many other ion current models (such

as INa, ICaL, etc.) are also based on experiments performed at different temperatures (Niederer et al.,

2009), most of which are then corrected via Q10 extrapolations (Courtemanche et al., 1998; Ten

Tusscher et al., 2004; O’Hara et al., 2011; Paci et al., 2013; Lei et al., 2017a).

5.3 Methods
The experimental methods, mathematical model of IKr, and the IKr model parameter inference

methods used in this chapter are identical to the methods detailed in Chapter 4. Here we focus on the

methods used specifically for studying the temperature dependence of the channel.

5.3.1 Experimental methods

Whole-cell patch-clamp voltage clamp experiments were performed on Chinese Hamster Ovary

(CHO) cells stably transfected with hERG1a (KV11.1). Measurements were performed using the

Nanion SyncroPatch 384PE (Nanion Technologies GmbH, Germany), an automated high-throughput

platform in which each run (or chip) is able to measure 384 wells (with one cell per well) simultane-

ously. For details, see Experimental Methods in Chapter 4.
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5.3.1.1 Temperature control

The SyncroPatch platform has a temperature control unit with software PE384TemperatureControl,

which consists of a temperature controller and several temperature monitors placed around the

machine compartment. The machine compartment contains all the solutions on stand-by and is where

the measurements occurred. Since the temperature controller consists of a heater with a fan, the

platform can only maintain temperatures higher than room temperature. The lowest temperature we

could maintain indefinitely was 25 ◦C, which is determined by room temperature (≈ 22 ◦C) plus heat

generated by the machine’s operation (≈ 3 ◦C), even if the heat controller itself was set to a lower

temperature.

To ensure that we recorded the temperature correctly, an external K-Type thermometer was used to

ensure the temperature difference between the measuring stage and the machine in-built temperature

monitors was . 0.5 ◦C. Note that the temperature readouts could differ from the temperature set

on the controller even after equilibrium, particularly close to room temperature, so we used the

thermometer and temperature monitors’ readouts as the true temperature of the experiments. The

temperatures of the five experiments were 25, 27, 30, 33, and 37 ◦C, and the uncertainty of our

temperature measurements was estimated to be ±1 ◦C by comparing the temperature differences at

various locations of the compartment. Due to the machine taking a substantial amount of time to

change temperature, distinct experiments were performed at different temperatures using different

cells (the same cell line but different individual cells in each well on sometimes different days).

5.3.1.2 Post-processing experimental data

We performed a series of quality control checks and corrections (in post-processing) to ensure the

currents recorded represent only IKr; for details, see Post-processing experimental data in Chapter 4.

Cells were then selected based on partially automated quality control described in Section 4.5.3.3,

resulting in Ne = 124, 91, 85, 84, 45 cells being selected for measurements at 25, 27, 30, 33, and

37 ◦C, respectively; and the 25 ◦C data were examined in Chapter 4. The lower yield of cells at

higher temperatures was mostly due to: reduced success in the cell capture step, before any recording

started; and also, to a lesser extent, deterioration of the patch clamp.

5.3.1.3 Data visualisation

Each hERG-transfected CHO cell was expected to have a different total conductance, hence giving

a different magnitude for the current recording. Therefore normalisation was applied for visual

comparison. Note that the validation of model predictions was performed without normalisation

(a conductance was fitted for each cell individually). To avoid any circular reasoning involved in

normalising based on the gKr parameter fit within the models (which, at this point, may or may not

vary with temperature), we used an experimental maximum conductance estimate. The experimental

estimate is approximated by extrapolating the negative tail current, after the first 40 mV to −120 mV

step, back to the time the voltage step occurred, as shown in Figure 5.2. Note that this normalisation

method is imperfect as it relies on a particular gating process (activation gate a ≈ 1 at the end

of the 40 mV step) which has some dependence on the kinetics we aim to compare, but the 22 ◦C

parameterisation of the model (Beattie et al., 2018) suggests a ≈ 1 is a reasonable approximation

103



Temperature Dependence of hERG Kinetics

0 2 4 6 8 10 12 14 16

100

0
V
o
lt
a
g
e

(m
V
)

0 2 4 6 8 10 12 14 16

Time (s)

1000

0

1000

C
u
rr

e
n
t

(p
A
)

1.86 1.88 1.90 1.92 1.94 1.96 1.98 2.00

Time (s)

1500

1000

500

0

500

Data
Fit
Est. value

C
u
rr

e
n
t

(p
A
)

Figure 5.2: An illustration of the estimation of the maximum conductance value (black cross). In the magnified
plot, the negative tail current (blue) after the first 40 mV to −120 mV step is extrapolated back to the time the
voltage step occurred (indicated by the green vertical dashed line). The extrapolation is done by fitting a single
exponential function (orange dashed line) to the tail current.

(even for lower temperatures) at this point in the protocol. However, since this method removes the

conductance dependency, it has a benefit over the normalisation-to-a-reference-trace method used in

Chapter 4 by preserving the different magnitudes of currents from different temperatures.

5.3.2 Mathematical model

We used the same Hodgkin and Huxley-style structure hERG model described in Chapter 4; see

Section 4.2.1 for detail. Model simulations were performed as described in Chapter 2. All codes and

data are freely available online, see Data and Software Availability at the end of the chapter.

5.3.3 Independent parameter fits at each temperature

The fitting procedure used in this chapter follows exactly that laid out in Chapter 4, but is repeated

for each of the five temperatures. For details, see Sections 4.3.1 and 4.3.2.

For each temperature T , we combined multiple experimental recordings using a hierarchical Bayesian

model, as in Chapter 4: The hierarchical Bayesian likelihood is given by

L

(
µ, Σ,

{
θ j,σ j

}Ne

j=1

∣∣∣∣ {y j
}Ne

j=1

)
∝

Ne∏
j=1

p (y j
∣∣∣ θ j,σ j)

× p
({
θ j

}Ne

j=1

∣∣∣∣µ, Σ
)

× p (µ, Σ) ×
Ne∏
j=1

p (σ j) , (5.12)

where µ, Σ are the hyperparameters of the hierarchical model representing the mean vector and covari-

ance matrix from which the individual ‘low-level’ (well-specific) parameters are drawn. {θ j,σ j}
Ne
j=1
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are the set of individual ‘low-level’ parameters for each of the Ne repeats of the experimental record-

ings {y j}
Ne
j=1. The three terms on the right hand side of Eq. (5.12) correspond to: (a) the likelihood of

all the individual (low-level) experiments; (b) the likelihood of the hyperparameters (top-level); and

(c) the prior of the hyperparameters and the prior of σ j.

We assumed φ j for a particular cell (experiment) j follows a multivariate normal distribution, namely

φ j ∼ N(µ, Σ). There are two distributions describing the well-well variability in this hierarchical

Bayesian model, one is the variability of the samples of the mean parameter vector µ, and the other

is the covariance matrix Σ. As discussed in Chapter 4 Discussion, we investigate in detail in the next

chapter how patch-clamp artefacts in each well might cause the well-well variability represented by

Σ. In Chapter 6 we conclude that the uncertainty in µ represents our uncertainty in the underlying

physiology, and we believe it corresponds to our uncertainty in the physiological hERG temperature

response, rather than our expected variability in the results of future experiments which would require

Σ too. Therefore in the rest of the chapter, we use the uncertainty in µ to quantify our uncertainty in

the model parameters.

For the choice of likelihoods and priors and sampling algorithms we used the simplified pseudo-

Metropolis within Gibbs (pseudo-MwG) algorithm introduced in Chapter 4. All inference and

sampling was done via an open source Python package that I co-developed, PINTS (Clerx et al.,

2019b) as described in Chapter 2; code is available online, see Data and Software Availability at the

end of the chapter.

5.3.4 Fitting Eyring and Q10 relationships

To investigate how well the two temperature models, the Generalised Eyring and the Q10 relationships,

can explain the temperature dependency of hERG kinetics, we fitted the two temperature models to

the inferred distribution of the mean parameter vector µ(T ) for all temperatures T . To do so, first we

transformed both the temperature models and µ(T ) to the Eyring plot form (see Figure 5.1). Second,

we modelled the marginal distribution of µ(T ) of pi at each T in the Eyring plot using a normal

distribution with mean µi(T
−1) and standard deviation σµ,i(T−1). We further assumed both µi(T

−1)

and σµ,i(T−1) follow the temperature models, given by Eq. (5.6), (5.7) for the Generalised Eyring

relationship and Eq. (5.10), (5.11) for the Q10 formulation.

Finally, given µi(T
−1) and σµ,i(T−1), we applied linear regression for parameters A, B in the Gener-

alised Eyring model (Eq. (5.6), (5.7) to infer aGE, bGE, cGE, dGE) and a least squares method for only

parameters A in the Q10 relationship (Eq. (5.10) to infer aQ10, cQ10) with the Levenberg-Marquardt

algorithm provided in SciPy (Jones et al., 2001); once to fit the mean and once to fit the standard

deviation of each parameter as a function of temperature. Due to the simplicity of the problem

after our transformation, a relatively simple optimisation algorithm was sufficient. For the constant

B parameter in the Q10 relationship (Eq. (5.11)), we followed the standard way of using a Q10

relationship where rates are extrapolated from room temperature. Therefore we extrapolated to other

temperatures using µi(T
−1) and σµ,i(T−1) at T = 25 ◦C.
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The estimated mean as a function of temperature was used to perform predictions for each temperature

model; the estimated standard deviation as a function of temperature allowed us to compute the

uncertainty bounds for the IKr model parameters for each temperature model.

5.4 Results

5.4.1 Temperature dependence of recordings

Figure 5.3 shows the normalised voltage clamp recordings measured with the nine different protocols,

and the corresponding voltage protocols, at the five temperatures. Each panel, from top to bottom,

shows the voltage clamp protocol (black), normalised recordings (blue) that passed quality control

at 25, 27, 30, 33, and 37 ◦C, respectively. All results shown are the first of the two repeats of our

recordings.

Figure 5.3A shows the staircase calibration protocol (in black) and the corresponding experimental

recordings (in blue). The change in the recorded current as temperature increased was prominent, it

increased the size of the current but also highlighted alterations to the kinetics: during the first half

(3–8 s) of the staircase protocol, at low temperature, there was almost no current recorded; however,

at physiological temperature, the current was almost as big as the current recorded during the second

half (8–13 s) of the staircase protocol. Furthermore, the shape of the current during the second half

(8–13 s) of the staircase protocol also changed as temperature increased. This demonstrates that the

staircase protocol contains some useful information on how kinetics change with temperature.

Figure 5.3B–I shows experimental recordings for the other eight validation protocols from the same

cells. In Validation #1 (Figure 5.3B) we saw the activation I-V curve shifting to a lower voltage

at higher temperatures. In Validation #3 (Figure 5.3D) and Validation #6–9 (Figure 5.3G-I) larger

hERG currents were observed at higher temperatures. Both these responses for hERG have been

reported previously (Vandenberg et al., 2006).

5.4.2 Temperature-dependent fits and predictions

In Chapter 4, we showed exclusively the quality of fits and predictions for the hERG models at 25 ◦C,

as this could be most easily compared with previous manual patch results (Beattie et al., 2018); the

models replicated both the experimental training and validation data very well.

Figure 5.4 shows the model fitting and validation results for all recorded cells at 37 ◦C alongside

the experimental recordings measured under the nine different protocols. We fitted the model to the

staircase protocol (Figure 5.4A) and validated against the other eight protocols (Figure 5.4B–I). To

visually compare the variability in hERG kinetics (and not conductance), currents are normalised

by scaling them to minimise the absolute difference between each trace and a reference trace (as in

Chapter 4).

We applied the same error measure as in Chapter 4, the relative root-mean-square error (RRMSE)

defined in Eq. (4.35), to quantify the fits and predictions. Figure 5.5 shows the RRMSE histograms
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Figure 5.3: Whole-cell patch-clamp voltage clamp recordings (normalised) under nine different protocols,
which were all measured in each cell, at five temperatures. For each panel, from top to bottom shows the
voltage clamp protocol (black), normalised current recordings (blue) that passed quality control at 25, 27, 30,
33, and 37 ◦C respectively. (A) The calibration protocol, the staircase protocol. (B)–(I) The eight different
protocols used as validation of the model calibration, which are the activation I-V protocol, the steady-state
inactivation I-V protocol, the hERG screening protocol, the delayed afterdepolarization (DAD)-like protocol,
the early afterdepolarization (EAD)-like protocol, and the cardiac action potential-like protocol at 0.5 Hz, 1 Hz
and 2 Hz, respectively. In (B) and (C), Validation #1 and #2 show the I-V relations extracted from the currents.

for all cells and for all protocols at 37 ◦C. Markers indicate the best (∗), median (‡) and 90th percentile

(#) RRMSE values, and corresponding raw traces and predictions are shown in the three panels

above. We note that the models only show single exponential decays due to the limitations of the

model structure whilst the data seem to show double exponential decays. These results demonstrate

that the hERG model remains a very good representation of the current kinetics, even at 37 ◦C, the

highest temperature.
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Figure 5.4: Whole-cell patch-clamp voltage clamp recordings under night different protocols, and the model
fitting and validation results, at 37 ◦C. All currents are normalised by scaling them to minimise the absolute
difference between each trace and a reference trace. From (A) to (I): The results of the staircase protocol which
is used as the calibration protocol, the activation I-V protocol, the steady-state inactivation I-V protocol, the
hERG screening protocol, the DAD-like protocol, the EAD-like protocol, and the cardiac action potential-like
protocol at 0.5 Hz, 1 Hz and 2 Hz, respectively. All the model calibration results and validation predictions are
shown in the top panels (orange), and are compared against the experimental recordings shown in the bottom
panels (blue). Zoomed-in of the green shaded regions are shown underneath each panel to reveal the details of
the spikes, in which our models show extraordinarily good predictions to the details. The normalised current
for all protocols are shown except for the activation I-V protocol and the steady-state inactivation I-V protocol
where the summary statistic I-V relationships are shown. Each cell is shown with a unique colour.

5.4.3 Temperature dependence of inferred model parameters

Figure 5.6 shows the inferred parameter values, which are used in the model predictions in Figure 5.4

and the intermediate temperatures, as a function of temperature. The figure shows the inferred

distribution of the hyperparameter mean vector µ (Eq. (5.12)) using the simplified pseudo-MwG at

each temperature in a violin plot. The mean values and 95% credible intervals of the hyperparameter

108



Chapter 5

Figure 5.5: The RRMSE (given by Eq. (4.35)) histograms for all cells and for all protocols at 37 ◦C. Markers
indicate the best (∗), median (‡) and 90th percentile (#) RRMSE values. The raw traces with the best, median
and 90th percentile RRMSE values, for both the model (red) and data (blue), are shown in the panels above,
together with the voltage protocol shown on top. (A)–(I) Show the staircase protocol, and a sequence of
validation protocols. Note that the currents are shown on different y-axis limits, to reveal the details of the
traces.
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Figure 5.6: Model parameters plotted as a function of temperature. Here only the inferred distribution of the
hyperparameter mean vector µ (Eq. (5.12)) using the simplified pseudo-MwG at each temperature is shown.
Parameters A, B refer to Eq. (5.1). Model parameters show different degrees of temperature dependency. The
conductance gKr does not show a prominent change as temperature increases.

gKr (pS) p1 (s−1) p2 (V−1) p3 (s−1) p4 (V−1) p5 (s−1) p6 (V−1) p7 (s−1) p8 (V−1)

T = 25◦C 3.10 × 104 0.0765 90.5 0.0284 47.4 103 21.3 8.01 29.6

T = 27◦C 3.40 × 104 0.175 70.8 0.0314 47.8 135 22.3 10.7 29.3

T = 30◦C 2.94 × 104 0.300 65.7 0.0339 53.5 179 21.8 14.5 29.2

T = 33◦C 2.64 × 104 0.540 67.1 0.0385 56.4 238 19.6 19.5 28.7

T = 37◦C 3.33 × 104 2.07 71.7 0.0344 61.8 418 25.8 47.5 25.1

Table 5.1: The mean values of the model parameters µ (in Eq. (5.12)) for all temperatures, corresponding to
the mean values shown in Figure 5.6.

mean vector µ for all temperatures are provided in Tables 5.1 and 5.2.

If the model kinetics were exhibiting temperature dependence following Q10 or Eyring rate theory,

then lines whose function is specified by these principles would fit the inferred parameters in

Figure 5.6.

In Figure 5.6, most parameters show an obvious monotonic trend as temperature increases; although

a handful take a slightly more complicated form. It is obvious that the B parameters we inferred (p2,

p4, p6, and p8 in the second row) are not constant over temperatures as would be expected using

a Q10 relationship. We will compare these inferred parameters with the theoretical relationships in

detail in the next section.

We then applied Eqs. (4.3) and (4.4) to calculate the steady-states a∞, r∞ and time constants τa, τr at

the five temperatures, using the mean of the inferred distribution of µ at each temperature. Figure 5.7

shows the resulting voltage dependency of the steady-states and time constants of the model gates a

and r, where each temperature is indicated by a different colour (25 ◦C blue to 37 ◦C red).
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gKr (pS) p1 (s−1) p2 (V−1) p3 (s−1) p4 (V−1) p5 (s−1) p6 (V−1) p7 (s−1) p8 (V−1)

T = 25◦C 2.91 × 104 0.0656 87.4 0.0265 46.7 100 20.3 7.73 29.3
3.29 × 104 0.0892 93.7 0.0305 48.2 106 22.3 8.29 30.0

T = 27◦C 3.13 × 104 0.158 68.4 0.0290 46.9 130 21.2 10.3 28.8
3.68 × 104 0.193 73.3 0.0340 48.7 140 23.5 11.1 29.8

T = 30◦C 2.71 × 104 0.268 63.9 0.0305 52.0 171 20.1 13.9 28.7
3.20 × 104 0.336 67.5 0.0376 54.9 186 23.6 15.2 29.8

T = 33◦C 2.38 × 104 0.477 65.3 0.0350 54.9 229 17.9 18.1 28.2
2.92 × 104 0.612 68.9 0.0424 58.0 248 21.4 20.9 29.1

T = 37◦C 2.94 × 104 1.78 69.3 0.0284 59.0 391 23.8 4.4e+1 24.2
3.77 × 104 2.39 74.2 0.0418 64.6 446 27.9 51.3 26.0

Table 5.2: The 95th percentile of the samples (95% credible intervals) of the model parameters µ (in Eq. (5.12))
for all temperatures. The top row for each temperature shows the lower bound; the bottom row shows the
upper bound.

0.0

0.2

0.4

0.6

0.8

1.0

a

0

2000

4000

6000

8000

10000

12000

a
(m

s)

100 50 0 50

0.0

0.2

0.4

0.6

0.8

1.0

r

100 50 0 50
0

2

4

6

8

10

12

14

r
(m

s)

Temperature (oC)

25 27 30 33 37

50 0 50

Voltage (mV)
100100 50 0 50

Figure 5.7: Predicted voltage dependency of steady-states and time constants of the model gates a and r at
different temperatures. These lines are calculated directly from inferred parameters using Eqs. (4.3) and (4.4)
with the independently-fitted hierarchical Bayesian model mean values.

Figure 5.7 shows that as the temperature increases, the steady-state of the activation gate a shifts

in a negative voltage direction, a prediction from the fitted model that is in agreement with the

experimental observations in Validation #1: the voltage of half-maximal activation (V1/2) of a∞
shifts from −7.5 mV at 25 ◦C to −30.9 mV at 37 ◦C, without a noticeable change in the slope

factor. However, the steady-state of the inactivation gate r does not show a prominent change

over temperatures.

The time constants of both gates τa, τr show a similar effect as temperature increases; the maximum

τa drops from 13.2 s at 25 ◦C to 2.2 s at 37 ◦C, and the maximum τr drops from 14.3 ms at 25 ◦C to

3.6 ms at 37 ◦C. Note that τa is on the order of seconds while τr is in milliseconds. The voltage which

maximises the time constant shifts from −11.6 mV at 25 ◦C to −31.7 mV at 37 ◦C for the activation

gate, although it does not show a noticeable change for the inactivation gate.

5.4.4 Comparing models of temperature dependence

Figure 5.8 shows the Generalised Eyring relationship and the Q10 equation fitted to the inferred

parameters shown in Figure 5.6 (orange violin plot). The results are shown in the Eyring plot form:

ln(A/T ) and | B | as functions of T−1. The Generalised Eyring fits are shown as green fan charts with
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Figure 5.8: Fitting of Generalised Eyring equation and Q10 equation to the distribution of the mean parameter
values (mean over all wells, µ, shown with an orange violin plot) on the Eyring axes. The obtained Generalised
Eyring fits are shown as green fan charts with the first three standard deviations; the obtained Q10 fits are
shown in red. The fitted parameters for the Generalised Eyring and Q10 equations are shown in the bottom
right tables, one set for each ki, i = 1, 2, 3, 4. For Q10 equations, Tref = 298.15 K was used. Note that the
non-zero estimations of D in the Generalised Eyring relationship indicate that the Typical Eyring cannot fit to
all B parameters, as it is required to go through the origin. For comparison to typical Q10 values in literature,
where Q10 values are commonly assumed to be around 2 to 3, we show a Q10∈ [2, 3] relationship with the grey
shaded region.

the first three standard deviations; the Q10 fits are shown similarly in red. The obtained parameters

for the Generalised Eyring equation (Eq. (5.3)) and the Q10 equation (Eq. (5.8)) are given in the

bottom right tables, one set for each rate ki, i = 1, 2, 3, 4. Reassuringly, the values in the tables are

comparable to (the same orders of magnitude as) typical literature values for ion channel models

(Tsien and Noble, 1969; Irvine et al., 1999; Zhou et al., 1998; Dhaka et al., 2006; Vandenberg et al.,

2006; Fink et al., 2008).

From the illustration in Figure 5.1, we expect the Generalised Eyring and Q10 formulations to be

indistinguishable for the A parameters, and indeed in Figure 5.8, the green fan charts (Generalised

Eyring) are on top of the red fan charts (Q10) in the first row: both formulations are able to fit to the

inferred model’s A parameters.

Figure 5.8 shows that the Generalised Eyring equations fit the inferred B parameters better than

the Q10 equations. The Generalised Eyring equations are able to fit the inferred model parameters

to a large extent except for p2; whereas the B parameters in the Q10 equations are not temperature

dependent (by definition), which is contradicted by our observations.
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Furthermore, it is evident that for parameters p4, p6 the two lines cannot intercept the y-axis close

to the origin, as they are decreasing rather than increasing on these plots. Parameters p2 and p8

also have non-zero estimates of D in the Generalised Eyring relationship, indicating that the Typical

Eyring relationship cannot be fit to any of our B parameters. The closest Typical Eyring relationship

for p8 is actually the example shown earlier in the bottom panel of Figure 5.1. The gradient of the

Generalised Eyring fit is approximately twice as steep as the Typical Eyring fit would require for this

parameter.

In the literature, Q10 coefficients for biological processes such as channel gating are commonly

thought to take values from around two to three (Ranjan et al., 2011). To investigate this assumption,

we projected our 25 ◦C model parameters directly using Eq. (5.8) with Q10∈ [2, 3] and shown as the

grey shaded region in Figure 5.8. Parameter p5 in the inactivation rate (k3) gives a Q10 just above

three, but none of our other inferred relationships for parameter A is close to the range Q10∈ [2, 3].

We further assess the performance of the temperature dependence models by comparing their mean

model predictions against the data and the temperature-specific models. Figure 5.9 shows the

mean model predictions from the temperature-specific parameters (orange), the Generalised Eyring

formulation (dotted green), and the Q10 coefficient (dashed red) for the staircase protocol. All

predictions are generated with the same mathematical model, Eq. (4.1), where the rate constants

in Eq. (4.3) and Eq. (4.4) are replaced by Eq. (5.4) (for the Generalised Eyring formulation) and

Eq. (5.8) (for the Q10 coefficient) computed with the inferred parameters shown in the tables of

Figure 5.8, with Q10-based predictions based on extrapolation from 25 ◦C. The top panel shows

the staircase protocol, followed by the normalised current at five different temperatures. Data (in

Figure 5.3A) are shown in fan charts style with the 30th, 60th and 90th percentiles in blue. At low

temperatures, all three models agree with the data. At higher temperatures, particularly at 37 ◦C,

the predictions from the Generalised Eyring formulation (dotted green) still agree reasonably with

the temperature-specific independently fitted parameters (orange) and both fit the data (blue) well.

However, the prediction using Q10 coefficients deviates from the data during the spikes (see zoomed-

in images on the right) and does not predict the time-course accurately during 4–7 s and 12–13 s of

the staircase protocol (see insets in Figure 5.9).

Figure 5.10 shows a 2 Hz action potential-like protocol prediction version of Figure 5.9. All the three

mean models are able to predict the current during the repolarisation of the action potential clamp

very well. The spikes during the upstrokes are however badly predicted by the Q10 coefficient mean

model; while the Generalised Eyring formulation, similar to the temperature-specific parameters,

gives a prediction closer to the data.

5.5 Discussion
This chapter addresses one of the questions set out in Chapter 3: whether a (simple) scaling of rates

in ion channel models is enough to capture the temperature dependence of the channel kinetics. A

short answer to that is “possibly not”. In this chapter we have examined the temperature dependence

of hERG kinetics, at five temperatures ranging from room to body temperature, with 45 to 124
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Figure 5.9: Comparison of the Generalised Eyring formulation (dotted green) and Q10 coefficient (dashed
red) mean predictions for the staircase protocol. Top figure shows the staircase protocol, followed by the
normalised current at five different temperatures. Data (in Figure 5.3A) are shown in fan charts style with the
90th, 60th and 30th percentiles in blue. The mean prediction from the hierarchical Bayesian model (HBM) is
shown in orange. Zoomed-in regions are shown on the right with colours matching the highlighted regions of
the main plots on the left.

cells per temperature. We have used a mechanistic model and its parameterisation to capture our

knowledge of the hERG kinetics. By assuming that all cells share the same mechanism underlying

hERG kinetics we have used the inferred model parameters at different temperatures to reveal the

temperature dependence of hERG gating kinetic parameters. This is, to our knowledge, the first

systematic effort to have taken this approach.

5.5.1 Temperature dependence of hERG kinetics

Using the staircase protocol, we were able to characterise hERG kinetics to the extent that our

model can replicate both the experimental training and validation data very well, for all of the

measured temperatures. Our models can predict the current response to the physiologically-relevant

action potential protocols with a very high accuracy, demonstrating that our IKr models are robust in

predicting hERG current, in both healthy and arrhythmic situations. This gives us confidence that the

cell-specific model parameters do represent and capture hERG kinetics at the given temperatures.

The directly fitted models reveal that the activation gate has a much higher temperature sensitivity

than the inactivation gate. This effect is shown in both the comparison of steady-states and time

constants (Figure 5.7) and the inferred Q10 coefficients (Figure 5.8) where the Q10 values for the

activation gate (k1, k2) are overall higher than the inactivation gate (k3, k4). Our results suggest that
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Figure 5.10: Comparison of the Generalised Eyring formulation (dotted green) and Q10 coefficient (dashed red)
mean predictions for the 2 Hz action potential-like protocol. Top figure shows the staircase protocol, followed
by the normalised current at five different temperatures. Data (Figure 5.3A) are shown in fan charts style with
the 90th, 60th and 30th percentiles in blue. The mean prediction from the hierarchical Bayesian model (HBM)
is shown in orange. Zoomed-in regions are shown on the right with colours matching the highlighted regions
of the main plots on the left.

there is no common Q10 value for different transition rates. In fact, the model equations (a gate x has

x∞ = ki/(ki + k j) and τx = 1/(ki + k j)) suggest that if either the steady state changes or the τ-V

curve shifts as function of temperature, then the transition rates ki and k j should have different Q10

values.

Our inferred Q10 coefficient for the rate of activation (k1) is relatively high compared to literature

results (Zhou et al., 1998; Vandenberg et al., 2006). However, our findings are not implausible, when

compared to other potassium channels, such as KV2.1 and KV4.3, which can have maximum Q10

values in the 20–30 range (Yang and Zheng, 2014). Other ion channels can also exhibit a very high

temperature sensitivity, such as transient receptor potential (TRP) ion channels which were reported

to have Q10 values ranging from 2–15 (Dhaka et al., 2006). We now compare our model predictions

with earlier literature results.

5.5.2 A comparison to literature results

Our hierarchical Bayesian models at different temperatures are not only able to predict our validation

data but also able to reproduce the temperature dependence seen in previous studies (Vandenberg

et al., 2006), where the increase of temperature caused a large increase in the overall ‘steady state

open probability’. Figure 5.11 shows that our simulations (right panel) are broadly consistent with
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the temperature effect observed by Vandenberg et al. (2006) (left panel). The fan charts show

the 30th, 60th and 90th percentiles of the simulations, representing the inter-experiment (well-well)

variability. There are differences between our simulations and their experimental results, with a

smaller open probability at low temperatures in our simulations and a slight shift of the curves to

the right. Nevertheless, our results are broadly consistent with the temperature effect observed by

Vandenberg et al. (2006) and predict a very similar ‘width’ for this steady state window of open

probability and also agree with the absolute values of the probabilities at the higher temperature very

well.
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Figure 5.11: Voltage dependence of steady state ‘open probability’ as defined by Vandenberg et al. (2006,
Figure 6) using a multiplication of experimental approximations for the product a∞r∞. (Left) Data extracted
from Vandenberg et al. (2006, Figure 6). (Right) The fan charts show the 90th, 60th and 30th percentiles of
the hierarchical Bayesian model simulations, representing the experiment-experiment variability. Orange/red
represents 32–33 ◦C, and blue represents 22–25 ◦C.

We also compared the model given by the mean of the posterior for µ at 37 ◦C (Table 5.1) with

existing IKr models from within action potential models by using the Cardiac Electrophysiology Web

Lab (Cooper et al., 2016; Daly et al., 2018). The CellML description (Garny et al., 2008) is available

online, see Data and Software Availability at the end of the chapter. Interestingly, the new model

shows a striking concordance for predicted current under action potential clamps with the Markov

model by Fink et al. (2008), as shown in Figure 5.12.

5.5.3 Experimental protocol dependence of Q10

Q10 formulations have often been estimated in the past with different protocols, even for the same

gating process (e.g. activation). For example, two well-known experimental studies of temperature

dependence of hERG kinetics, by Zhou et al. (1998) and Vandenberg et al. (2006), estimated the Q10

coefficients using different protocols and analyses, and reported two different sets of Q10 coefficients

(see Table 5.3) for various gating processes. We asked, if the two experiments were to be repeated

with the same underlying kinetics, would they agree with one another? Using our directly-fitted

models at 25 ◦C and 37 ◦C, we simulated the two different sets of experiments described in (Zhou

et al., 1998; Vandenberg et al., 2006). We then estimated two sets of Q10 coefficients following the
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Figure 5.12: A comparison of predictions of the Fink et al. (2008) IKr model and our mean model using
the posterior for µ at 37 ◦C, under a series of action potential clamps. Both models have the same fixed
gKr = 0.5 µS to compare the differences in kinetics.

protocols and analysis in each of the papers, and the obtained values are shown in Table 5.3. The

findings in Table 5.3 show that due to different protocols the estimated Q10 coefficients can disagree.

Furthermore, neither of the protocols reproduces the direct estimate of Q10 coefficients from the

model parameter temperature relationships (shown in the bottom right of Figure 5.8). We conclude

that extreme caution should be used when directly modifying rates in models with experimental

estimations of Q10 coefficients.

5.5.4 Implication for ion channel temperature dependence

Fitting directly to the staircase protocol at different temperatures does not require any assumption

about the underlying temperature dependence of the kinetic parameters, except that the model struc-

ture does not change. The existing well-known models/approximations for temperature dependence

of ion channel transition rates are the Q10 and Typical Eyring formulations. This chapter has raised

concerns about how accurate these relationships are. In terms of parameter values (Figure 5.8) neither

of these methods is able to capture the full temperature dependence of the directly-fitted parameters,

µ(T ), and predictably this impairs their ability to fit and predict currents (Figure 5.9). However,

Zhou et al. (1998) Vandenberg et al. (2006)

Reported values Model estimation Reported values Model estimation

Activation 6.25 ± 2.55 10.67 ± 7.482 2.1 ± 0.30 7.400 ± 4.111
Deactivation 1.36 ± 0.40 2.016 ± 0.764 1.7 ± 0.30 3.692 ± 1.224
Inactivation 3.55 ± 0.87 3.421 ± 1.028 2.5 ± 0.53 2.750 ± 0.900
Recovery 3.65 ± 0.73 2.991 ± 0.730 2.6 ± 0.26 4.436 ± 2.763

Table 5.3: Q10 coefficients for each gating process, estimated using the protocols specified in Zhou et al. (1998)
and Vandenberg et al. (2006). The values were derived from simulations performed using the temperature-
specific hierarchical Bayesian model fits at 25 ◦C and 37 ◦C.
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using a Generalised Eyring relationship (not commonly used in ion channel modelling) can closely

mimic our full direct fitting approach. Whilst the model predictions using the Q10 formulation can

generally predict overall trends in temperature effects, the predictions cannot capture the details

of the current, compared to the Generalised Eyring relationship or the full direct fitting approach

(see Figures 5.9 and 5.10). We therefore suggest neither Q10 formulations nor the Typical Eyring

relationship should be used: the Generalised Eyring relationship is much better for temperature

predictions. But for the best results the model should be refitted at any temperature of interest using

an information-rich protocol, such as our staircase protocol.

The nonlinearity of some kinetic parameters on the Eyring plots implies the Generalised Eyring

relationship is a reasonable but imperfect temperature model. Under the assumption that the model

structure is correct, we accurately captured the kinetics at each temperature, and the model structure

stays the same for all temperatures. However, we could challenge these assumptions, and suppose

that the Generalised, or even Typical, Eyring relationship is true for any transition of ion channel

from one conformational state to another. In this case, the Eyring formulation not matching the

individual temperature parameter sets could imply that, either: (a) the hERG model structure that we

have assumed is incorrect, i.e. the relationship not holding is a consequence of discrepancy between

the model and reality; or, (b) our procedure did not accurately capture the kinetic parameters at each

temperature, but the fact that the parameters give excellent fits and predictions (and many parameters

do follow expected trends) perhaps alleviates this concern; or, (c) in reality, the energy landscape of

ion channel conformations changes with temperature, and a given transition in the model represents

a different jump in conformational state, i.e. the model structure should change with temperature

(which has been modelled previously for hERG by Di Veroli et al. (2013)).

In any case, applying a simple treatment such as the Q10 coefficient to an imperfect model that violates

the assumptions above would not automatically alleviate any mismatch. Since our temperature-

specific fits can replicate both the experimental training data and the validation data very well at all

temperatures, the model is a good representation of hERG kinetics. Hence it is better to apply a rapid

and reproducible procedure, as illustrated here, for generating all the parameters within a model at a

new temperature, whenever possible. However, if necessary, then the Generalised Eyring relationship

would be a preferable choice for predicting kinetics at a new temperature where measurements cannot

be, or have not been, taken. While further work might show our results are more generally applicable

to other channels, for now they should be interpreted as being specific to hERG1a.

5.6 Conclusion
In this chapter, we have studied the temperature dependence of hERG kinetics using a 15-second high-

information content protocol developed in Chapter 4. We characterised the temperature dependence

by fitting a mathematical model of hERG channel kinetics to data obtained at five distinct temperatures

between 25 and 37 ◦C. We constructed between 45 and 124 cell-specific hERG models at each

temperature using the 15-second calibration protocol, and our cell-specific variants of the hERG

model were able to predict currents under eight independent validation protocols with high accuracy.

We represented the variability in parameters using a hierarchical Bayesian model, and were able to
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reproduce the temperature dependence observed in previous literature studies. Our models reveal

that the hERG activation process has a higher temperature sensitivity than the inactivation process.

The Q10 coefficients that we obtained range from 1.2 to 13.1 for different processes, falling outside

the commonly assumed range of around 2 to 3. Moreover, the temperature dependence of the kinetic

parameters we obtained takes a more complicated form than that predicted by Q10 coefficients.

Although the temperature dependence cannot be described by a Typical Eyring approach, it broadly

follows a Generalised Eyring relationship. Our results show that a direct fit to the 15-second protocol

is the best representation of hERG kinetics at a given temperature, whilst the Generalised Eyring

theory is the best alternative if no such data are available.

After applying the methods developed in Chapter 4 to study the temperature dependence of ion

channel kinetics, again, we see strong experiment-to-experiment variability in measurements at

different temperatures, similar to the previous chapter. It is worth noting that the variability that

we discuss in Chapters 4–6 is fundamentally different from that has been discussed in Chapter 3.

Here, we refer to the variability of the kinetics rather than the maximum conductance between

measurements, as further discussed in the next chapter. However, since the cells expressed the same

genes and were measured at the same time under highly similar conditions, the resulting current

kinetics were expected to be more similar across cells. In the next chapter, we look for the origin of

the observed variability in these measurements. That is, we address the question that arises in these

two chapters: Does the observed variability result from biological or physiological variability, or

could it rather be caused simply (or mostly) by measurement artefacts?

5.7 Data and Software Availability
Data and software (GitHub repository):

https://github.com/CardiacModelling/hERGRapidCharacterisation

CellML version of the mean 37 ◦C model:

https://github.com/CardiacModelling/hERGRapidCharacterisation/blob/master/

lei_2019_37C.cellml
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Chapter 6

A Mathematical Model of Artefacts in
Patch-Clamp Experiments

This chapter was published as: Lei, C. L., Clerx, M., Whittaker, D. G., Gavaghan, D. J., de Boer,
T. P., and Mirams, G. R. (2020a). Accounting for variability in ion current recordings using a
mathematical model of artefacts in voltage-clamp experiments. Philosophical Transactions of the
Royal Society A, 378:20190348.

Contributions: I assisted in designing the study, derived the mathematical models, built the model

cells, carried out the experiments, and wrote code for and performed all the simulations and data

analysis.

Overview:

In the previous chapters we fitted cell-specific models to information rich recordings of human Ether-à-go-go-

Related Gene (hERG)1a (KV11.1) measured simultaneously using an automated high-throughput system. In

those chapters, we assumed our recordings were measured with only Gaussian noise and studied the observed

cell-cell variability by considering the variability in the resulting cell-specific model parameters. In this chapter

we revisit this ideal measurement assumption to consider instead whether the source of the variability might

be measurement artefacts. We do this by constructing a model that describes not just ion current dynamics,

but the entire voltage-clamp experiment. The experimental artefact components of the model include: series

resistance, membrane and pipette capacitance, voltage offsets, leak current, and imperfect compensations

made by the amplifier for these phenomena. In this model, variability in the observations can be explained

by either cell properties, measurement artefacts, or both. Remarkably, by assuming that variability arises

exclusively from measurement artefacts, it is possible to explain a larger amount of the observed variability

than when assuming cell-specific ion current kinetics. This assumption also leads to a smaller number of model

parameters. This chapter suggests that most of the observed variability in patch-clamp data measured under

the same conditions is caused by experimental artefacts, and hence can be compensated for in post-processing

by using this new model for the patch-clamp experiment.
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6.1 Introduction
High levels of variability in ion channel kinetics have been observed in many studies (Bekkers

et al., 1990; Finkel et al., 2006; Feigenspan et al., 2010; Golowasch, 2014; Santillo et al., 2014;

Altomare et al., 2015; Annecchino and Schultz, 2018). In Chapter 4 we analysed human Ether-à-go-

go-Related Gene (hERG) current kinetics recorded simultaneously in 124 cells using an automated

high-throughput patch-clamp machine (see Figure 4.1). The experiments used Chinese Hamster

Ovary (CHO) cells stably expressing hERG1a. Since the cells over-expressed the same gene and

were measured at the same time under highly similar conditions, one might expect the resulting

current kinetics to be very similar across different cells. However, a high level of variability was

seen, similar to that in previous studies using manual patch-clamp experiments conducted one cell

at a time over several days (Beattie et al., 2018). This raises a question — what is the origin of the

observed variability?

All of these voltage-clamp measurements for studying the ion channel kinetics were done under a

whole-cell patch-clamp configuration (see Chapter 2) using a patch-clamp amplifier. In voltage-clamp

mode, the patch-clamp amplifier is a sensitive feedback amplifier that rapidly calculates, applies and

reports the small currents necessary to maintain a given voltage across a cell’s membrane (and vice

versa for current-clamp mode) (Sigworth, 1995b). Typical peak current magnitudes are on the order

of pA to µA, depending on the size and type of cell; the voltage across the cell membrane (potential

inside minus outside) typically is within the range −140 to +60 mV.

Figure 6.1 (left) shows an idealised voltage-clamp experiment, where the cell is connected directly

to an ammeter which records the current of interest, Iion, while clamping the membrane to the

command voltage, Vcmd. In other words, a perfect patch-clamp experiment can be represented with

the following simple equations/assumptions:

(command voltage) Vcmd = Vm (membrane voltage),

(measured current) Iout = Iion (current of interest).

(6.1)

(6.2)

This is the first of three ways of modelling the patch-clamp system that will be discussed in this

chapter (each enclosed in boxes as above).

In realistic voltage-clamp experiments, as illustrated in Figure 6.1 (right), the cell membrane acts as

a capacitor in parallel to the ion currents. Between the pipette electrode and the cell, there is a series

resistance, which induces a mismatch between the membrane voltage Vm and the command voltage

Vcmd, causing a shift in measured current-voltage relationships (Marty and Neher, 1995; Sherman

et al., 1999). Furthermore, there is a voltage offset introduced between the pipette electrode and the

cell (Neher, 1995); and the wall of the pipette (or the well plate in an automatic system) behaves as a

capacitor. Finally, a finite seal resistance can cause a substantial leak current that contaminates the

recording of the current of interest. All of these can be partially compensated by the patch-clamp

amplifier using real-time hardware adjustments, or addressed in post-processing, and the remainder

are what we term ‘experimental artefacts’. Often the existence of a leak current is acknowledged

and an estimate for it is subtracted in a post-processing step to modify the Iout in Eq. (6.2) as we will

122



Chapter 6
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Figure 6.1: Schematics of the voltage-clamp experiment: (left) idealised and (right) more realistic. (Left)
Only the current of interest (red) is modelled. The membrane voltage, Vm (red), is assumed to be the same as
the command voltage, Vcmd (green), set by the amplifier, and the observed current, Iout (green), is assumed to
be equal to the ion channel current, Iion (red). (Right) Here, not only the current of interest (red) is modelled,
but the patch-clamp amplifier process (green) and all of the experimental artefacts (purple) are included in
the model. The differences between Vm (red) and Vcmd (green), and between Iion (red) and Iout (green) are
explicitly modelled in this framework.

discuss later. Although real-world experiments suffer from the other remaining artefacts, most studies

assume the experimental apparatus perfectly compensates for any discrepancies, so the idealised

assumptions (Eqs. (6.1)–(6.2)) are frequently used when analysing experimental data.

In this chapter, we relax the typical, ideal voltage-clamp assumptions by introducing a mathematical

model that accounts for artefacts, imperfect amplifier compensations for artefacts, together with any

residual uncompensated leak current. We then validate the mathematical model experimentally using

electrical model cells, for which we designed a new type of electrical model cell which exhibits

simple dynamic behaviour. Using this new mathematical model, variability in observations can be

attributed to measurement artefacts as well as current properties. We develop a method to optimise

the following quantities at the same time: ion current maximal conductance for each cell; a set

of current kinetic parameters common to all cells; and measurement artefact parameters for each

cell. Finally, we compare fits and assess the predictions of models calibrated with either the ideal

voltage-clamp assumptions (used in Chapter 4) or realistic voltage-clamp assumptions we develop in

this chapter.

This chapter quantifies one of the important sources of uncertainty, the observational uncertainty

discussed in Chapter 2. Artefacts also become an important aspect to be considered as we design

further experiments in the next chapter.

6.2 A detailed mathematical model of a
voltage-clamp experiment

Figure 6.2 presents an expanded circuit for the more realistic voltage-clamp experiment shown in

Figure 6.1 (right), including the amplifier components that compensate for the additional artefacts in

the realistic experiment. Our goal is to observe the ion current across the cell membrane, Iion. This
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Figure 6.2: A more realistic voltage-clamp experiment equivalent circuit. This includes undesired factors such
as voltage offset (Voff), series resistance (Rs) between the pipette electrode and the cell, cell capacitance (Cm),
pipette capacitance (Cp), and leakage current (Ileak), which can introduce artefacts into the recordings. The
circuit also includes the components within a typical amplifier that are designed to compensate for the artefacts.
The blue (A) and orange (B) components are two idealised multiplying digital-to-analogue converters that
control the amount of compensation. We assume that these, and the transimpedance amplifier and differential
amplifier (green), are ideal electrical components. Please refer to Table 6.1 for a description of the symbols.

current is present in the ‘Cell Model’ in Figure 6.2 (shown with black, dashed box). Between the Cell

Model and the Headstage (green, dashed box) is where the pipette (or the well plate in an automatic

system) sits, separating the cell membrane and the pipette electrode, which includes many of the

undesired artefact components shown in Figure 6.1 (right). There are five main undesired effects

in this voltage-clamp set-up: 1. parasitic/pipette capacitance (a capacitance effect induced by the

pipette wall); 2. (cell) membrane capacitance; 3. series resistance (a lumped term for all resistances

between the pipette electrode and the cell); 4. voltage offset (due to amplifier offsets, electrode offsets,

junction potentials, etc.); 5. leak current (a current leak through the pipette-cell seal and any leak

through the membrane). Table 6.1 contains a glossary of symbols and parameters used for these

quantities throughout this chapter.

To model the dynamics of the current of interest, Iion, the assumptions behind Eqs. (6.1)–(6.2) can

be removed to instead model the entire voltage-clamp experiment and amplifier compensations. A

derivation of the voltage-clamp experiment model is given below, where each of the undesired effects

and how they are typically compensated is modelled based on published circuitry (Moore et al., 1984;

Neher, 1992, 1995; Sigworth et al., 1995; Sigworth, 1995a,b; Strickholm, 1995; Sherman et al., 1999;

Weerakoon et al., 2009, 2010; HEKA Elektronik GmbH, 2018; Axon Instruments Inc., 1999). Below,

in the first half, we consider a voltage-clamp experiment without any compensation, in which we

derive the equations for the effects of membrane capacitance, series resistance, leak current (seal

resistance), pipette capacitance, etc. In the second half, we include typical compensations that are

performed in the model.

124



Chapter 6

Symbol Typical values Description

General

t — Time variable
Capacitance

Cf 0.3 pF Feedback shunt capacitance
Cm 5–20 pF Membrane capacitance. These are typical values for the CHO cells used

in this chapter (see also Chapter 4); 100–400 pF has been measured for
individual cardiomyocytes in various species (Satoh et al., 1996) (∼ 190 pF
for human Sakakibara et al., 1993); and can be as high as 100 nF for large
cells such as Xenopus oocytes (Schmitt and Koepsell, 2002).

Cp 3–5 pF Parasitic capacitance at the pipette/well plate; also known as ‘pipette capac-
itance’ in manual patch

Current

Iin — Voltage-clamp current
Iinj — Injection current
Iion O(1) nA Whole-cell ion channel current (can reach O(1) µA for Xenopus oocytes

(Schmitt and Koepsell, 2002))
Ileak — Leakage current through imperfect seal
Im — Membrane current
Iout — Recorded current
Ip — Current drawn by parasitic capacitance of the pipette/well plate
Ipost — Post-processed (leak subtracted) current

Resistance

Rf 25 MΩ Feedback resistance
Rs 5–20 MΩ Series resistance between the pipette electrode and the cell
Rseal 0.5–10 GΩ Seal resistance of the pipette tip

Time constant

τa 50–2000 µs Membrane access time constant, τa = RsCm

τsum 5–70 µs Response time of the summing amplifier
τclamp 0.8 µs Voltage-clamp time constant
τz 7.5 µs Transconductor time constant, τz = RfCf

Voltage

Vcmd O(100)mV Command voltage; follows the voltage-clamp protocols
Vclamp O(100)mV Clamp voltage
Vest O(100)mV Estimated membrane potential
Vm O(100)mV Membrane potential
Voff O(10)mV Offset voltage, such as amplifier offsets, electrode offsets, junction poten-

tials, etc.
Vout O(100)mV Recorded voltage, Vout = IoutRf

Vp O(100)mV Pipette potential

Table 6.1: Glossary of symbols and parameters. We also denote a (machine or post-processing) estimate of a
parameter X as X∗, and the error in the estimate of the same parameter as X†. The range of typical values are
taken from Weerakoon et al. (2009); Neher (1995); HEKA Elektronik GmbH (2018); Axon Instruments Inc.
(1999), unless otherwise specified.
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Modelling undesired effects in patch clamping

First of all, at the electrode-membrane junction in Figure 6.2, by applying Kirchhoff’s current law,

we have

Im = Iin − Ip − Ileak − Iion, (6.3)

where

Cp
dVp

dt
= Ip, (6.4)

and

Cm
dVm

dt
= Im. (6.5)

Therefore

Cm
dVm

dt
= Iin −Cp

dVp

dt
− Ileak − Iion, (6.6)

Iin = Iion + Ileak +Cm
dVm

dt
+Cp

dVp

dt
. (6.7)

This shows that Iin is ‘contaminated’ by a leak current, a C-Slow (Cm) term, and a C-Fast (Cp) term.

Here, Iin is observed via Vout using the transimpedance amplifier within the Headstage (green box in

Fig. 6.2), a feedback system that converts an input current to a voltage output, which is low-pass

filtered by the transconductor time constant τz = RfCf. We then have

Vout + τz
dVout

dt
= IinRf, (6.8)

and since Vout = IoutRf, we have

Iout + τz
dIout

dt
= Iin. (6.9)

Therefore, our final observed current Iout is given by
dIout

dt
=

Iin − Iout

τz
. (6.10)

Furthermore, most of the current measured using voltage-clamp depends on Vm which we try

to control through the command voltage, Vcmd. By analysing the voltage drop across the series

resistance, Rs, we have

(Vp + Voff) − Vm = Rs (Iin − Ip) , (6.11)

and together with Eq. (6.6), we get

Cm
dVm

dt
=

Vp + Voff − Vm

Rs
− Iion − Ileak. (6.12)

This is more usually written as
dVm

dt
=

1
τa

(Vp + Voff − Vm) −
1

Cm
(Iion + Ileak) , (6.13)

where τa = RsCm, and Voff is the voltage offset. There are two types of effects introduced by Rs, one

by the ionic current deviating Vm from Vcmd, and the other by the cell membrane capacitance slowing

down Vm from approaching Vcmd. From Eq. (6.13) we can see that as Rs → 0, Vm → Vp (with an

offset Voff) instantly; whilst, as Rs → ∞, Vm behaves independently of Vp and is determined by the
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membrane ion channels as if an isolated cell. The pipette voltage Vp is controlled by the command

voltage Vcmd, and is delayed by the electrical components,

dVp

dt
=

1
τclamp

(Vclamp − Vp) . (6.14)

When no compensation is performed, Vclamp is simply the command voltage Vcmd in the above

equation. In the second half of this derivation, we will see how modern voltage-clamp amplifiers

manipulate Vclamp to reduce some of the undesired effects described above.

Finally, we model a linear-in-voltage leak current of the form

Ileak = gleak (Vm − Eleak) , (6.15)

where gleak and Eleak are the conductance and the reversal potential of the leak current. If this is a

clean setup with no other leaks apart from a non-selective ion current leak through the pipette-cell

seal, the parameters of this current would be gleak = 1/Rseal and Eleak = 0.

Modelling modern patch amplifier compensations

In this second half of the derivation, after analysing all the undesired artefacts, we mathematically

model how modern patch amplifiers typically compensate for them (Weerakoon et al., 2009; Axon

Instruments Inc., 1999; HEKA Elektronik GmbH, 2018). Firstly, the voltage offset is usually

estimated and compensated prior to adding the cell to the system, either with an automated correction

estimated using software control or by applying manually a voltage offset such that it gives zero

current when clamped at zero voltage, so the compensation circuit is not shown in our patch clamp

equivalent circuits (Neher, 1995; Sigworth et al., 1995). The major source of voltage offset may

be the liquid junction potential, a potential difference of ∼ 2 − 12 mV which develops when the

pipette-filling solution is different from the bath solution (Neher, 1992). The adjustment is usually

done by adding the theoretically estimated liquid junction potential offset to V∗off
. We can write the

error in the estimate of the overall voltage offset V†off
as

V†off
= Voff − V∗off. (6.16)

We then simply need to replace all instances of Voff in the equations above with V†off
to describe the

effect of imperfect voltage offset compensation, and V†off
is assumed to be O(10)mV.

Secondly, to compensate the effect of the parasitic capacitance at the electrode, an additional current

Iinj is injected at the electrode to compensate for the current drawn by the parasitic capacitance. By

analysing the capacitance compensation part (orange box in Figure 6.2), we get

Iinj = C∗p
dVclamp

dt
, (6.17)

where C∗p is the amplifier’s estimate of the parasitic capacitance Cp. Then Eq. (6.3) becomes

Im = Iin + Iinj − Ip − Ileak − Iion, (6.18)
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and Eq. (6.7) becomes

Iin = Iion + Ileak +Cm
dVm

dt
+

(
Cp

dVp

dt
−C∗p

dVclamp

dt

)
. (6.19)

This is usually known as ‘C-Fast’ compensation.

Thirdly, we need to consider compensation for the cell membrane capacitance Cm. Usually the

effect of Cm is reduced by a hardware ‘C-Slow’ compensation, using a similar circuit to the ‘C-

Fast’ compensation discussed above (Sigworth et al., 1995; Sigworth, 1995a). However, since the

value of Cm can reach 100 pF in some cell types, and capacitor sizes can be limited, the ‘C-Slow’

compensation is sometimes performed as a post-processing step by the amplifier control software

rather than using built-in amplifier hardware (Weerakoon et al., 2010). In either case, the full

capacitance compensation can be written as

Iin = Iion + Ileak +

(
Cm

dVm

dt
−C∗m

dVclamp

dt

)
+

(
Cp

dVp

dt
−C∗p

dVclamp

dt

)
, (6.20)

where C∗m is the amplifier (or user’s) estimate of the membrane capacitance Cm.

Finally, in voltage clamp, we want Vm to approach Vcmd as quickly as possible. However, in Eq. (6.13),

there are two effects introduced by Rs, the first one causes Vm to deviate from Vcmd and the second

slows down Vm’s approach to Vcmd. The first effect is caused by the second term on the right hand

side of Eq. (6.13), (Iion + Ileak), which can be reduced through a series resistance compensation

(Moore et al., 1984; Strickholm, 1995; Sigworth et al., 1995; Sigworth, 1995a; Sherman et al., 1999;

Weerakoon et al., 2009). By analysing the series resistance compensation part (blue box in Figure 6.2),

instead of clamping to Vcmd, it is set to Vcmd + αR∗s Iout, where R∗s is the machine estimation of the

series resistance Rs, and α is the requested proportion of series resistance compensation (a machine

setting, typically 70–85 %).

The second effect is caused by the product of the series resistance Rs and the membrane capacitance

Cm, i.e. the membrane assess time constant τa, which can be reduced through a compensation termed

“supercharging” (Armstrong and Chow, 1987; Sigworth, 1995b). We set the clamping voltage to have

a large overshoot (hence the name “supercharging”) proportional to αR∗sC∗m dVest/dt, where

dVest

dt
=

1
R∗sC∗m

(
Vcmd + αR∗sC∗m

dVest

dt
− Vest

)
(6.21)

=
Vcmd − Vest

(1 − α)R∗sC∗m
, (6.22)

according to Sigworth (1995b, Figure 18). The effect of the overshooting is to charge the membrane

capacitance quickly. Including all the compensations, Vclamp becomes

dVclamp

dt
=

1
τsum

((
Vcmd + αR∗s

(
Iout +C∗m

dVest

dt

))
− Vclamp

)
, (6.23)

to counterbalance the two effects caused by the series resistance. Note that the supercharging

correction is particularly important when measuring big, very fast currents such as INa which has a

time-to-peak within ∼5 ms, however this correction poses almost no issue when analysing smaller,

slower currents, for example IKr.
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A summary of the voltage-clamp experiment model equations is as following:

Iion = f (t, Vm), Ion channel model

Ileak = gleak (Vm − Eleak) , Leak current
dVm

dt
=

1
RsCm

(
Vp + V†off

− Vm
)

Voff compensation

−
1

Cm
(Iion + Ileak) ,

dVp

dt
=

1
τclamp

(
Vclamp − Vp

)
, Amplifier delay

dVest

dt
=

Vcmd − Vest

(1 − α)R∗sC∗m
, Supercharging

V ′cmd =Vcmd + αR∗s

(
Iout +C∗m

dVest

dt

)
, Rs compensation

dVclamp

dt
=

1
τsum

(V ′cmd − Vclamp) , Compensation delay

Iin = Iion + Ileak

+Cp
dVp

dt
−C∗p

dVclamp

dt
Cp compensation

+Cm
dVm

dt
−C∗m

dVclamp

dt
, Cm compensation

dIout

dt
=

1
τz

(Iin − Iout) . Observed current

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

In these equations, α is a user-specified proportion of series resistance compensation, and gleak and

Eleak are the conductance and the reversal potential of the leak current. The meaning of the remaining

symbols is given in Table 6.1.

In the real cell data analysed later, a leak compensation was applied to the data itself, prior to

model fitting, as shown in Eqs. (6.33) and (6.34). The parameters in Eq. (6.33) are estimated in

post-processing by assuming Ileak is the only current active during a ‘leak step’ between voltages

where Iion ≈ 0. Estimation and compensation are typically performed automatically by e.g. the

HEKA Patchmaster and the Nanion SyncroPatch, although we performed our specially designed leak

compensation using the ramp-step in the staircase protocol as discussed in Chapter 4. Finally, Iout is

then adjusted by subtracting estimated leak

I∗leak = g∗leak (Vcmd − E∗leak) , (6.33)

Ipost = Iout − I∗leak. (6.34)

to give Ipost as a better approximation of Iion.
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6.3 Validating the mathematical model with
electrical model cell experiments

Before applying the voltage-clamp experiment model to currents from a real biological cell, we

tested the performance of our mathematical model with electrical model cells — circuits made of

electrical hardware components to mimic real cells. Some of these model cells are commercially

available, e.g. HEKA MC 10, HEKA TESC, Axon or Molecular Devices PATCH-1U, and used to

test and calibrate patch-clamp amplifiers.

We are interested in both the current readout of a voltage-clamp experiment and the membrane

voltage that the cell experiences. Therefore we designed a circuit that connects the model cell to

two amplifiers, one in voltage-clamp mode and one in current-clamp mode, as shown in Figure 6.3.

This set-up can simultaneously perform the conventional voltage-clamp procedure on the model cell

with one amplifier; whilst using the other in current-clamp mode (clamped to zero) to measure the

clamped voltage at the terminal corresponding to the membrane via the current-clamp. Effectively,

this set-up allows the membrane voltage Vm of the electrical model cell to be recorded with one

amplifier whilst performing the conventional voltage-clamp current measurement with the other.

6.3.1 Electrical model cell design

In Figure 6.3 (left and middle) is a circuit which is equivalent to commercially-available model

cells (the design was based on the HEKA TESC in ‘whole cell’ mode). In this chapter, we call this

a Type I Model Cell. It consists of a capacitor and a resistor in parallel to mimic the membrane

capacitance, Cm, and membrane resistance, Rm. Unlike real ion channels, this simple electrical

model cell lacks any time-varying current dynamics in the Rm resistor representing ion currents. We

therefore developed a new type of model cell, termed a Type II Model Cell, which exhibits simple

current dynamics when stepping to different voltages.

Figure 6.3 (right) shows the equivalent circuit of our Type II Model Cell. In addition to the usual

Cm and Rm connected in parallel, this model cell has an extra component (Rk in series with Ck)

connected in parallel, to mimic the addition of another ion current with some kinetic properties. The

time constant (τk = RkCk) for this extra component was chosen to be O(100)ms, which is of the

same order of magnitude as IKr dynamics. The dynamics of the Type II Model Cell allow us to

test and understand the effects of series resistance, etc., and enable us to validate our mathematical

voltage-clamp experiment model experimentally to check we have correctly modelled amplifier

compensations.

6.3.2 Validation of the mathematical model

The experimental recordings using the simultaneous voltage clamp and current clamp set-up are

shown in Figure 6.4 (solid lines), with Type I (Figures 6.4A, C) and Type II (Figures 6.4B, D) Model

Cells. The measurements were performed with a holding potential of 0 mV.
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Model cell
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Cm Rm
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Model cell

Vm
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Rm

Rk

Ck

Type II
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Figure 6.3: Circuit diagrams for electrical model cell experiments. (Left) A circuit set-up where a model cell
is connected to both a voltage-clamp amplifier and a current-clamp amplifier. The voltage-clamp imposes
a command voltage, Vcmd, on the model cell and measures the current, Iout; while the current-clamp simul-
taneously measures its ‘membrane voltage’, Vm. (Middle) An equivalent circuit of the Type I Model Cell,
which is identical to the commercial ‘black box’ model cells (HEKA TESC) under the ‘whole cell’ mode.
(Right) An equivalent circuit for the Type II Model Cell. This model cell is designed to exhibit dynamics
when stepping to different voltages, with a time constant similar to ionic currents. The circuits were built with
discrete electrical components, with Cp = 4.7 pF, Rs = 30 MΩ, Cm = 22 pF, Rm = 500 MΩ, Ck = 1000 pF,
and Rk = 100 MΩ.

We performed two sets of experiments, firstly with no amplifier compensation, and secondly with

automatic amplifier compensation using a computer controlled amplifier (HEKA EPC 10 Double

Plus) where amplifier settings could be set with high precision. Here, automatic adjustment of the

compensation settings, including Voff, Cp, Cm, and Rs, was performed using the HEKA Patchmaster

software which closely follows the compensation procedure operators perform by hand on many

manual patch-clamp amplifiers (pages 80–84 of the HEKA manual (HEKA Elektronik GmbH,

2016)).

For the simulations, parameters were set in Eqs. (6.24)–(6.32) to correspond to each set of experi-

ments: for no amplifier compensation {V†off
, C∗p, C∗m, R∗s , gleak}were set to zero; while for the automatic

amplifier compensation those parameters were set to the amplifier’s estimates. Results are shown in

Figure 6.4 for part of the voltage clamp protocol to be used for IKr measurements later in this chapter.

Our model (dashed lines) is able to capture both the current and the membrane voltage very closely,

for all these experiments. Note the differences between the membrane voltage Vm (grey) and the

command voltage Vcmd (orange/red). For example, in the uncompensated case, due to the voltage

drop across Rs in the Type I Model Cell Vm shows a simple offset. But in the Type II Model Cell Vm

exhibits nonlinear dynamics while Vcmd does not. When the amplifier was actively compensating

the differences between Vm and Vcmd were successfully reduced. All of these details are captured by

the mathematical model so we are confident that Eqs. (6.24)–(6.32) are a good representation of the

model cells, amplifier compensations and artefacts that occur when compensations are disabled or

imperfect.
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Figure 6.4: Model simulations (dashed lines) using the amplifier settings compared against the simultaneous
voltage clamp-current clamp measurements of the model cells (solid lines). Measurements are shown without
compensation using (A) Type I Model Cell and (B) Type II Model Cell; and measurements with automatic
amplifier compensation for Voff, Cp, Cm, and Rs with α = 80% using (C) Type I Model Cell and (D) Type II
Model Cell. All command voltages were set to be the staircase voltage protocol developed in Chapter 4 (top
panel); here only the last 3 s of the measurement is shown, the whole trace is shown in later figures. In the top
panel of each subfigure, the grey lines represent the command voltage Vcmd, and the orange/red lines represent
the membrane voltage Vm; the bottom panel shows the current readout via the voltage-clamp, Iout.

6.3.3 Parameter inference without compensations

Next, we attempt to use only the uncompensated, raw voltage-clamp measurements (i.e. only Iout

in Figure 6.6A, and Vcmd) to infer the underlying membrane voltage, Vm, and the parameters of the

model cells. We then compare the model Vm predictions with the current-clamp measurements. To

optimise the model parameters root-mean-square error (RMSE) between the simulated and recorded

Iout was minimised using a global optimisation algorithm Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) as described in Chapter 2. Model simulations and optimisation were performed

as described in Chapter 2. All codes and data are freely available online, see Data and Software

Availability at the end of the chapter.

6.3.3.1 Application to the Type I Model Cell

Figure 6.5A shows the fitted model Iout (bottom, orange dashed line) and its prediction of the

membrane voltage Vm (top, red dashed line), compared with experimental recordings (solid lines).

Figure 6.5B further shows that the fitted model is able to predict current measurements under an

independent, unseen voltage-clamp command protocol — a series of action potential waveforms

(blue lines in the first panel). The series of action potential-like waveforms were concatenated from
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Figure 6.5: Inferred model simulations and predictions (dashed lines) compared to experimental data (solid
lines) from a Type I Model Cell. (A) Model calibration with the staircase protocol (grey lines in the top panel),
where the model was fitted to only the current recording (blue, solid line in the lower panel). The fitted model
was able to predict the membrane voltage, Vm (orange, solid line), measured using current-clamp. (B) Further
model validation using an independent voltage-clamp protocol, a series of action potentials (grey lines in the
top panel). Again, predictions from the model fitted to the staircase protocol above (dashed lines) are excellent
for both the current and the membrane voltage.

Rm (MΩ) Cp (pF) Cm (pF) Rs (MΩ) Voff (mV)

Component label 500.00 4.70 22.00 30.00 0.00
Patchmaster estimate 498.00 7.80 32.85 32.60 0.20
Fitted parameters 567.21 23.36 32.51 34.85 -0.12

Table 6.2: Type I Model Cell parameters, comparing the values of hardware component labels in the circuit,
the values estimated by the Patchmaster amplifier software using a simple test pulse, and our inferred values
from the mathematical model.

those in Chapter 4; they are composed of linear ramps and steps to permit use on high-throughput

machines that cannot clamp to arbitrary waveforms. Magnifications of the protocols are shown

later in Figure 6.10C–F; they include a delayed afterdepolarization (DAD)-like protocol, an early

afterdepolarization (EAD)-like protocol, and a series of action-potential-like protocols with different

beating frequencies. Additionally, the agreement between predictions and measurements of Vm (the

model is only given the command voltage Vcmd) provide assurance the scheme is able to infer the

applied Vm as well as predict current.
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6.3.3.2 Application to the Type II Model Cell

Next we look at the Type II Model Cell; this should be the more challenging of the two and more

similar to a real ionic current. Figure 6.6A shows the fitted model Iout (bottom, orange dashed line)

and its corresponding prediction of the membrane voltage, Vm (top, red dashed line), compared

against the experimental recordings (solid lines). Figure 6.6B further shows that the fitted model is

able to predict measurements under an independent, unseen voltage-clamp protocol, the series of

action potential-like waveforms (grey lines in the first panel). Note the excellent predictions for Vm

and its deviation from Vcmd.

Table 6.3 also shows a comparison of the values of the hardware components (with manufacturing

tolerances of ±1 to 2%) in Figure 6.3, the amplifier’s estimation using a standard test pulse, and

the fitted values using the mathematical model. Our model-inferred values are much closer to the

component labels than the amplifier estimates because the Type II Model Cell exhibits nonlinear

dynamics (as do real cells); whereas the amplifier uses a simple square-wave test pulse and assumes a

simple resistor-capacitor model cell (i.e. a Type-I Model Cell) when estimating the parameters. That

is, there is a difference between the electrical model cell we attached and the circuit the amplifier
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Figure 6.6: Inferred model simulations and predictions (dashed lines) compared to experimental data (solid
lines) from a Type II Model Cell. (A) Model calibration with the staircase protocol (grey lines in the top
panel), where the model was fitted to only the current recording (blue, solid line in the lower panel). The fitted
model was able to predict the membrane voltage, Vm (orange, solid line), measured using current-clamp. (B)
Further model validation using an independent voltage-clamp protocol, a series of action potentials (grey lines
in the top panel). Again, predictions from the model fitted to the staircase protocol above (dashed lines) are
excellent for both the current and the membrane voltage.
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Rk Ck Rm Cp Cm Rs Voff

(MΩ) (pF) (MΩ) (pF) (pF) (MΩ) (mV)

Component label 100 1000 500 4.7 22 30 0
Patchmaster estimate — — 91.30 8.80 41.19 33.60 -1.20
Fitted parameters 94.20 1062.69 520.70 4.85 36.38 34.87 0.20

Table 6.3: Type II Model Cell parameters (for the components shown in Figure 6.3). (Row 1) hardware
component labels (Voff is zero as there is no battery/voltage-offset component); (Row 2) Patchmaster amplifier
software estimates using a simple test pulse; (Row 3) inferred values from the mathematical model. The
mathematical model captures the fact that there are kinetics/dynamics in the Type II cell and improves on the
amplifier’s estimates of the components.

is designed to compensate, thus leading to inaccurate automated estimation of some components.

For example, even though we did not apply any voltage offset, Voff, in the experiment, the amplifier

incorrectly estimated an offset of −1.2 mV. Proceeding with this amplifier-estimated value would

lead to a voltage offset artefact of V†off
= −1.2 mV in all recordings. Using the full model would

capture these effects and take them into account when calibrating current kinetic parameters.

Thus far, we considered a realistic voltage-clamp experiment and developed a detailed mathematical

model for such a setting, where imperfect compensations made by the amplifier and imperfect leak

current subtraction are included. We then validated this mathematical model via electrical model cell

experiments, demonstrating that our model captures the main effects of the voltage-clamp artefacts

and amplifier compensations. In the next part of the chapter, we apply our mathematical model to the

experimental CHO-hERG1a data presented in Chapter 4.

6.4 Application to variability in CHO-hERG1a
patch-clamp data

After experimentally validating the mathematical model of the full voltage-clamp experiment with

two electrical model cells, it is now applied to experimental data from real cells. Here, the high-

throughput dataset from the previous chapter, Chapter 4, is used. The dataset contains 124 voltage-

clamp recordings of the potassium current that flows through hERG (KV11.1) channels (IKr) measured

with the staircase protocol and eight other independent protocols. The measurements were performed

on CHO cells stably transfected with hERG1a at 25 ◦C, using the Nanion SyncroPatch 384PE, a

384-well automated patch-clamp platform (see Figure 4.1). All the data were leak-corrected (see

Eq. (6.34)), E-4031 subtracted, and passed a semi-automated quality control. The recordings, and

parameter values derived from them, showed good agreement with earlier work using manual patch

(Beattie et al., 2018), for details of the methods please see Chapter 4.

In Chapter 4, all of the observed variability in the post-processed data was assumed to be due

to biological variability in IKr conductance and kinetics, which we term “Hypothesis 1”, and so

124 cell-specific variants/parameterisations of the IKr model were created. Kinetic parameters fitted

to cell-specific data using the staircase calibration protocol enabled very good predictions for eight
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Figure 6.7: A schematic overview of the two hypotheses we explore. Hypothesis 1 assumes the collected
data represent a perfect, idealised voltage-clamp experiment where any experimental artefacts have been
perfectly compensated by the amplifier and leak subtraction, so all the observed variability is rooted in
biological variability (varying conductance and model kinetics in every cell), we term these ‘independent
kinetics models’. Hypothesis 2 assumes that the observed variability is due to differences in the voltage-clamp
experimental artefacts, and that all of the cells share identical ion channel kinetics (although the maximum
conductance is allowed to vary across cells), we term these ‘identical kinetics models’.

independent validation protocols (see Chapter 4). However, covariance in the inferred parameters

across cells led us to speculate about a voltage offset (V†off
) being responsible for much of the

variability.

So an alternative hypothesis is that all cells have the same IKr kinetics (functional properties of the

channel proteins), but different maximal conductances (expression levels of the proteins) and different

patch-clamp artefacts from cell-to-cell, so that the observed variability in the current kinetics is due to

variability in the voltage-clamp experiment model. We term this set of assumptions “Hypothesis 2”.

Figure 6.7 shows a schematic overview of the two hypotheses.

For the details of the mathematical model of IKr please refer to Chapter 4 Section 4.2.1, where we

have

Iion = IKr = f (t, Vm; gKr, θ) = gKr · a · r · (Vm − EK). (6.35)

We now discuss the extent to which patch-clamp artefacts and imperfect compensations can explain

the variability in the biological recordings.

6.4.1 Inference with the full voltage-clamp experiment model

Earlier we saw how the full voltage-clamp experiment model (Eqs. (6.24)–(6.32)) had parameters

that could be successfully inferred from data for the electrical model cells. We now test how this

inference scheme performs when combined with the IKr model of Eq. (6.35) in a synthetic data

study. The idea is to show that with an information-rich current signal measured under such as the

staircase protocol developed in Chapter 4, even combined with the voltage-clamp experiment model,

theoretically we are able to infer all of the parameters.

We first simulated 10 traces of patch-clamp data by using one set of kinetic parameters θ (the identical

kinetics assumption, with the hierarchical Bayesian mean parameters from Chapter 4, also shown in

Table 6.5) together with a set of randomly generated voltage-clamp experiment model parameters.

The voltage-clamp experiment model parameters were sampled as follows:

V†off
∼ N(0, 1.5) (mV), (6.36)
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Figure 6.8: Synthetic IKr data study with 10 traces with identical kinetics and different patch artefacts:
membrane capacitance, series resistance, seal resistance, pipette capacitance, and leak. The pipette capacitance
is the hardest parameter to infer, with errors of up to 15%. But overall, both kinetic parameters and voltage-
clamp experiment model parameters are practically identifiable.

Rs ∼ lnN(12.5, 2) (MΩ), (6.37)

Cm ∼ lnN(15, 2.5) (pF), (6.38)

Cp ∼ lnN(4, 1) (pF), (6.39)

gleak ∼ N(0.25, 0.1) (nS), (6.40)

gKr ∼ lnN(32.3, 32.3) (nS). (6.41)

Additionally Eleak was set to be −80 mV. We also assumed that the experiments were done with

80% series resistance compensation (α = 0.8), and that the amplifier estimations had normally

distributed errors with a standard deviation of 10%, i.e. after a realisation of Rs we sampled R∗s from

N(Rs, 0.1Rs). Then we performed parameter inference for these synthetic data. Since in actual

experiments we know the values of the machine estimations, we do not infer them. We attempted to

infer the rest: gKr, θ, Cm, Rs, Cp, V†off
, and gleak.

Figure 6.8 shows the results of the simulated study with the voltage-clamp experiment model.

Figure 6.8 (top, middle) shows the simulated membrane voltage Vm (grey lines) traces differ from

the command voltage Vcmd (blue dashed line). The simulated voltage-clamp data are shown in blue

with simulated noise, plotted against the fitted model shown in orange. Figure 6.8 (bottom) shows

the relative error of the inferred parameters. It shows that all of the parameters could be identified

(model parameters gKr and θ together with artefact parameters Cm, Cp, Rs, V†off
and gleak) from a

single cell recording.

137



A Mathematical Model of Artefacts in Patch-Clamp Experiments

We then tested this approach with real experimental data. However, values of the series resistance, Rs,

were consistently estimated to be at the lower bound we had imposed, which we consider unrealistic;

results and code for this analysis can be found in the online repository. This behaviour could be due

to imperfections in the representation of IKr by the model (model discrepancy (Lei et al., 2020c)), as

all parameters in the full voltage-clamp experiment model were successfully inferred in the cases of

electrical model cells or synthetic IKr data. We therefore propose a simplification of the voltage-clamp

experiment model whilst capturing the principal causes of variability.

6.4.2 A simplified voltage-clamp experiment model

Modelling the entire voltage-clamp machine may not be necessary, because the timescales of the

components in the system span multiple orders of magnitude; ranging from the order of 0.1 µs (e.g.

τclamp) to tens of ms (e.g. ‘C-slow’) or many seconds for ion channel gating (e.g. activation of IKr at

room temperature in Vandenberg et al., 2006). For these IKr investigations the two fastest processes,

τclamp and τz, can be approximated as instantaneous responses. That is, Eqs. (6.27) and (6.32) can be

approximated as Vp ≈ Vclamp and Iout ≈ Iin, respectively.

To study the behaviour of the voltage-clamp experiment model further, we performed a simple local

sensitivity analysis of the model. We examine the sensitivity of the four parameters, C∗m, R∗s , C†p and

V†off
, to the output/observed current. The ‘local’ values that we used are C∗m = 10 pF, R∗s = 5 MΩ,

C†p = 0 pF and V†off
= 0 mV, respectively. We assume all settings (Cm, Rs, etc.) are estimated

perfectly and we use α = 85% series resistance compensation. For parameters C∗m and R∗s , they

are swept with a factor from 0.3 to 3; for parameter C†p, from −4 pF to 4 pF; and for parameter V†off
,

from −5 mV to 5 mV. These values were chosen to show the extreme effects of these imperfect

compensations (e.g. we might expect C∗m would be within three times its true value Cm). Although

there are no direct measurements for these parameters (these parameters describe machine estimates

of true values and error in these), we based this analysis on variability in machine estimates and

observed variability in reversal potential in Chapter 4.

Figure 6.9 shows the results of the sensitivity analysis. After analysing the local sensitivity of the

voltage-clamp experiment model, we found that in the observed current, the effects of V†off
and

imperfect Rs compensation are most apparent (on timescales relevant to IKr); whereas C∗m and C†p
affect only a small portion of the current (the transient current that occurs when the voltage is stepped

to a new value). As a result, we further assume that (1) τsum, part of the fast amplifier processes, is

instantaneous; (2) the effects of Cp and Cm are negligible; and (3) C∗m, R∗s ≈ Cm, Rs.

Finally, the data were leak subtracted, where the leak current parameters (g∗leak and E∗leak) were

estimated by fitting Eq. (6.25) to current during the −120 to −80 mV leak-ramp at the beginning of

the measurements, to yield zero current at holding potential (see Chapter 4). We allow this leak

subtraction to be imperfect by retaining a small residual leak current with parameters g†leak and E†leak.
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Figure 6.9: A sensitivity analysis of the voltage-clamp experiment model, showing the effects of imperfect
compensation in the voltage-clamp amplifier. Dashed black lines indicate the ideal case, that is Vcmd and IKr

simulated with Vcmd. The voltage traces shown in colour are Vm that the cell sees, and current traces shown in
colour are Iout that we observe. Only effects from Voff and Rs are predominant while effects from Cm and Cp

have less effect.

With these assumptions, Eqs. (6.24)–(6.32) become

Iion = f (t, Vm; gKr, θ) = IKr, Ion channel model

Ileak = g†leak

(
Vm − E†leak

)
+ I∗leak, Total leak current

dVm

dt
=

1
R∗sC∗m

(
Vp + V†off

− Vm
)
−

1
C∗m

Iout, Voff compensation

Vp = Vcmd + αR∗s Iout, Rs compensation

Iout = Iion + Ileak, Observed current

Ipost = Iout − I∗leak. Post-processed current

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

For all symbols refer to Table 6.1, and I∗leak is given by Eq. (6.33). The effective reversal potential of
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the residual leak current, E†leak, is chosen to be the holding potential (−80 mV) because the primary

leak-subtraction (fit of g∗leak and E∗leak) ensured approximately zero current at holding potential.

Therefore, we have only two voltage-clamp model parameters (V†off
and g†leak) to infer along with the

ion current parameters (gKr and θ). Note that the other parameters (α, C∗m, and R∗s ) can be obtained

from the amplifier settings without performing any inference.

This simplified voltage-clamp experiment model was successfully applied to the model cell experi-

ments (as shown below) and, like the full model, was able to correct imperfect Rm estimates made by

the amplifier.

6.4.2.1 Applying the simplified model to electrical model cell

We assess the performance of the simplified voltage-clamp experiment model (Eqs. (6.42)–(6.47))

by applying it to the electrical model cell experiments. We focus on the Type II Model Cell as

it exhibits nonlinear dynamics. The most interesting consequence of this dynamical behaviour is

that it misleads the amplifier into incorrect estimation of Rm and erroneous compensation for Voff.

As shown in Table 6.3, with a simple test pulse the amplifier estimated R∗m ≈ 90 MΩ (when the

component Rm = 500 MΩ), and V∗off
≈ −1.2 mV (in the model cell, Voff = 0 mV). Note that because

the amplifier (erroneously) applied V†off
≈ −1.2 mV, that is the target V†off

for the parameter fit to

return.

Rk (MΩ) Ck (pF) Rm (MΩ) V†off
(mV)

Effective component values 100 1000 500 -1.20
Fitted parameters 96.02 1044.68 508.34 -1.40

Table 6.4: Inference of Type II Model Cell parameters with active amplifier compensation using the simplified
voltage-clamp experiment model. We compare the components’ labelled values in the circuit setup (with
V†off

= −1.2 mV added alongside as an effective component due to active amplifier compensation), and inferred
values from the mathematical model.

Since the simplified voltage-clamp experiment model is based on compensated data, we use amplifier

compensated data collected from the Type II Model Cell (Figure 6.4D). Table 6.4 shows the parameter

inference results using the simplified voltage-clamp experiment model. The simplified model is

able to: (i) recover Type II Model Cell parameters Rk, Ck, Rm with acceptable accuracy; and (ii) ‘re-

correct’ the amplifier’s incorrectly estimated (and thereby artificially introduced) voltage offset. Note

that these component estimates are better than the ones from the experiment with no compensation,

suggesting a strategy of correcting the amplifier’s active compensations may be better than running

experiments with no compensation and inferring all these values in post-processing.

6.4.3 Optimisation of model parameters

We now present the parameter optimisation schemes used to test each hypothesis.
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6.4.3.1 Hypothesis 1: Cell-specific kinetics with no artefacts

Under Hypothesis 1, any experimental artefacts are perfectly compensated by the amplifier and

leak subtraction in post-processing. Any variability in the kinetic parameters obtained in current

models fitted to the resulting data would reflect underlying variability in the biological function

of the channels. To test this hypothesis, the parameter inference scheme detailed in Chapter 4

was employed. In summary, a Bayesian inference scheme was used which resulted in very narrow

posterior distributions. This scheme used some parameter transforms so that the optimisation

algorithm (CMA-ES) searches in log-transformed space for certain parameters. Here we look for the

most likely parameter set under that scheme, which is identical to that given by a least square-error

fit. So the log-likelihood of a given parameter set for cell i is proportional to

Li = −
∑(

Imodel
i − Idata

i

)2
. (6.48)

Under this hypothesis, Imodel
i is a function of just conductance gi and kinetic parameters θi, and is

given by Eq. (6.35) while assuming Vm = Vcmd. So we performed an optimisation to maximise Li

by finding gi and θi for each cell i independently. The resulting models under this hypothesis are

termed independent kinetics models.

6.4.3.2 Hypothesis 2: Identical kinetics for all cells, with cell-specific artefacts

Hypothesis 2 (Figure 6.7, right) assumes that the observed variability is due to the imperfect

voltage-clamp experiments. Under this assumption, models fitted to the data should have the same

kinetic parameters, θ∗, across all cells, that is, θi = θ∗ for any cell i. But there will be a cell-

specific IKr conductance, gi, and different patch-clamp experiment parameters for each cell too,

φi = {V
†

off,i, g†leak,i}. These models are termed identical kinetics models.

To impose the assumption that all N cells have the same kinetics, and that the observed variability

arises only from the experimental artefacts, the log-likelihood becomes

L (θ, {g1, . . . , gN ,φ1, . . . ,φN}) =
N∑

i=1

Li (θ, gi,φi) , (6.49)

where Li, still defined by Eq. (6.48), is the log-likelihood for the ith cell. But under this hypothesis,

Imodel
i is the post-processed current Ipost in Eq. (6.47) and hence Li is a function of the artefact

parameters φi too.

Optimising L is a high-dimensional optimisation problem, which is computationally expensive.

This burden is reduced with a Gibbs-sampling style scheme; breaking the optimisation problem

into two: (i) optimising the common kinetics parameters, θ; and (ii) optimising the cell-specific

parameters, {gi,φi}i=1,...,N . To evaluate the maximum likelihood of θ, we nest optimisation schemes.

That is, for any single estimate of θ, we optimise {gi,φi} for each cell i independently to compute an

approximate likelihood for θ. The estimate of θ is then updated by running a single iteration of the

outer optimisation loop, followed again by optimisation to convergence for {gi,φi} in each cell. This

overall scheme converges to the full set of optimal parameters: θ∗, {g∗i ,φ∗i }i=1,...,N .
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Algorithm 6.1: Identical kinetic models (Hypothesis 2) parameter inference scheme

Result: Obtain θ∗,
{
g∗Kr,i,φ

∗
i

}
i
= argmaxθ,{gKr,i,φi}i

L (θ,
{
gKr,i,φi

}
i)

Initialise
{
Lkinetics,i

}
i ,

{
Lartefacts,i

}
i;

Set θ0,
{
g0

Kr,i,φ
0
i

}
i
;

L0 ←
∏

i Lkinetics,i
(
θ0

∣∣∣∣ g0
Kr,i,φ

0
i

)
;

j← 0;
while not terminate do
θ j+1 ← sample θ with an optimisation algorithm given L j;
foreach i do

g j+1
Kr,i ,φ j+1

i ← argmaxgKr,i,φi
Lartefacts,i

(
gKr,i,φi

∣∣∣ θ j+1
)

end
L j+1 ←

∏
i Lkinetics,i

(
θ j+1

∣∣∣∣ g j+1
Kr,i ,φ j+1

i

)
;

j← j + 1;
end
θ∗,

{
g∗Kr,i,φ

∗
i

}
i
← θ j,

{
g j

Kr,i,φ
j
i

}
i

The parameter inference scheme is shown in Algorithm 6.1, where Lkinetics,i is the likelihood of

the kinetic parameters θ, and Lartefacts,i is the likelihood of gKr,i,φi for the ith measurement. By

optimising L(θ), we get θ∗, {g∗Kr,i,φ
∗
i }i, where {g∗Kr,i,φ

∗
i }i vary across measurements which explains

all the observed variability.

6.4.4 Variability in ion channel kinetics or variability in patch-clamp
artefacts?

The performance of the models arising from the two hypotheses is compared next. For Hypothesis 1

the results from Chapter 4 are used, where all the variability was assumed to be the result of kinetic

variability (giving 9 parameters× 124 cells= 1116 parameters in total). For Hypothesis 2 we use

the results from optimising L(θ) in Eq. (6.49).

As in Chapter 4, fits and predictions are quantified using relative root-mean-square error (RRMSE),

defined as the root mean square error between the model simulation and the experimental data,

divided by the root mean square distance of the data to a zero current trace:

RRMSE =

√∑
(Imodel − Idata)2

/∑
(Idata)2. (6.50)

Using this RRMSE quantification, the difference in the absolute size of the current across cells (due

to varying conductance) is eliminated such that the scores are comparable between cells.

Figure 6.10 shows the RRMSE histograms for all 124 cells, for all nine different protocols, and for

the two sets of models. Markers indicate the best (∗), median (‡) and 90th percentile (#) RRMSE

values for the independent kinetics models (red), and the corresponding raw current traces are shown

in the three panels above. The model predictions for the same three cells with the identical kinetics

model are shown in green. These protocols were used in Chapter 4 where they were intended to

explore physiologically-relevant predictions for IKr behaviour.
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Figure 6.10: The RRMSE histograms for all protocols, comparing the independent kinetics models from
Chapter 4 and the identical kinetics models with voltage-clamp artefact. Each histogram represents the same
124 cells with a different protocol and RRMSE each time. Red markers indicate the best (∗), median (‡)
and 90th percentile (#) RRMSE values for the independent kinetics model; green markers are the same cell
prediction from the identical kinetics models. For each protocol, the raw traces for the identical kinetics model
(green), the independent kinetics model (red), and data (blue) are shown, with the voltage-clamp above. Note
that the currents are shown on different scales for each cell, to reveal the details of the traces.
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Quantitatively, the two models show a similar RRMSE distribution for each protocol. For the

calibration protocol shown in Figure 6.10A, the RRMSE histogram of independent kinetics models

(Hypothesis 1, shown in red) clearly shows lower errors on average (and hence better fits) than

the identical kinetics models (Hypothesis 2, in green). This is expected, as under the independent

kinetics hypothesis 9 parameters can be varied per cell (leading to 9× 124 = 1116 degrees of freedom

overall), while under the identical kinetics hypothesis there are only 3 (for 8+ 3× 124 = 380 degrees

of freedom). This increased freedom allows Hypothesis 1 to achieve better fits, but could also lead to

overfitting (Whittaker et al., 2020).

In overfitting, an increased number of degrees-of-freedom leads to improved fits to calibration

data, but at the expense of a loss of predictive power on new data sets. Examples in Figure 6.10D,

Validation #3, hint that this may be happening. Here, the ‘median quality’ Hypothesis 1 prediction

(with nine cell-specific parameters) over-predicts the peak current under the Validation #3 protocol. In

contrast, the Hypothesis 2 prediction (with three cell-specific parameters) is much closer to the data,

suggesting that the cell-specific Hypothesis 1 parameter set may have varied kinetic parameters to fit

details that are better explained by patch artefacts. To summarise such fits across all 124 recordings

we can examine the histograms of RRMSE beneath each protocol in Figure 6.10. Interestingly

Hypothesis 1 only shows better predictive performance than Hypothesis 2 for the Validation #2

protocol in Figure 6.10C. We believe this is due to the similarity between Validation #2 and the

Calibration protocol — they both step up and down to the same range of voltages in the same

duration steps of 500 ms — i.e. this is the validation situation closest to the training protocol which

Hypothesis 1 does better at due to having extra parameters to fit. Further evidence that overfitting

might be occurring under Hypothesis 1 is shown by Figure 6.10E-I, where the red RRMSE histogram

is shifted right, indicating that validation predictions show higher error for Hypothesis 1 than

Hypothesis 2. In summary, Hypothesis 2 provides predictions in new situations that overall are

at least as good as, or even slightly better than, Hypothesis 1. Coupled with the greatly reduced

number of degrees-of-freedom in Hypothesis 2 (736 fewer parameters), this is a strong indication

that identical kinetics is the preferred hypothesis for these data.

In the identical kinetics models, all the variability must be explained by the voltage-clamp artefact

parameters, φi, and the cell conductance, gKr,i, in Eq. (6.49). Figure 6.11 shows the histograms and

the pairwise scatter plots of the obtained {g∗Kr,i,φ
∗
i }i=1,...,124. The artefact parameter values are within

reasonable ranges (∼ ±5 mV for V†off
and g†leak � gKr) and are not strongly correlated, which lends

further credibility to the identical kinetics models (Hypothesis 2).

Finally, one might expect that the mean of the kinetic parameters identified under Hypothesis 1

would be similar to the single set of kinetic parameters identified under Hypothesis 2. Table 6.5

shows the inferred parameters of the identical kinetics across all 124 cells under the assumptions

of Hypothesis 2 (the mean of Hypothesis 1 from Chapter 4 is also shown for comparison). Kinetic

parameters and model predictions from the two hypotheses are very similar, but not exactly the same.

Figure 6.12 shows the predictions for voltage dependency of steady-states, open probability and time

constants using the inferred parameters in Table 6.5. All of them are calculated directly from inferred

parameters using Eqs. (4.3) and (4.4). Grey lines show the predictions from Hypothesis 1 (assuming
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a gate p1 (ms−1) p2 (mV−1) p3 (ms−1) p4 (mV−1)

Hypothesis 1 7.65 × 10−5 9.05 × 10−2 2.84 × 10−5 4.74 × 10−2

Hypothesis 2 1.13 × 10−4 7.45 × 10−2 3.60 × 10−5 4.49 × 10−2

r gate p5 (ms−1) p6 (mV−1) p7 (ms−1) p8 (mV−1)

Hypothesis 1 1.03 × 10−1 2.13 × 10−2 8.01 × 10−3 2.96 × 10−2

Hypothesis 2 9.61 × 10−2 2.36 × 10−2 7.85 × 10−3 3.06 × 10−2

Table 6.5: Inferred parameters for the mean of Hypothesis 1 (assuming cell-specific kinetics with no artefacts;
from Chapter 4) and Hypothesis 2 (assuming identical kinetics for all cells with cell-specific artefacts).

cell-specific kinetics with no artefacts; from Chapter 4), and red lines show the predictions from

the mean of Hypothesis 1. Green lines show the predictions from Hypothesis 2 (assuming identical

kinetics for all cells with cell-specific artefacts). There is a noticeable shift of the parameters between

Hypothesis 1 (mean) and Hypothesis 2. Finally the predictions using the parameters in Table 6.5 for

the staircase protocol is shown in Figure 6.13, showing the differences in terms of current prediction.

The difference is due to the unaccounted experimental artefacts in Hypothesis 1 that are included in

the (model) kinetic parameters. If Hypothesis 2 is correct, the kinetic parameters derived from it are

the more physiologically-relevant.

We also examined a ‘Hypothesis 3’ where conductance, kinetics and artefacts were all cell-specific.

Fits improved slightly (as expected with more parameters) but predictions were of similar quality to
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Hypothesis 1, and not as good as Hypothesis 2. Figures and code for this analysis can be found in

the online repository (see Data and Software Availability at the end of the chapter).

6.5 Discussion
In this chapter we have introduced a new mathematical model for voltage-clamp experiments

that accounts for experimental artefacts and imperfect compensations of these artefacts, as well

as imperfections in leak current subtraction. The model gives insight into the process of how

experimental artefacts are introduced and the performance of the compensation procedure. For

example, often the largest currents have the highest signal-to-noise ratio and could be interpreted

as the ‘cleanest’ recordings. But in Eq. (6.29), the model shows that the effect of Rs in distorting

the applied voltage is proportional to the current size. So, for a given series resistance and a fixed

percentage compensation (α), the bigger the current then the larger this artefact; after we published

this work (Lei et al., 2020a), Montnach et al. (2020) used a simplified artefact model (accounting for

only the series resistance) to study the same effect with INa and IKs.

We validated the mathematical model through experiments using two types of electrical model cells,

where we showed that our mathematical model is able to rectify imperfect amplifier estimations; then

applied it to account for artefacts whilst inferring parameters of an IKr model from hERG1a CHO

cell data. This is, to our knowledge, the first time a detailed voltage-clamp experiment model has

been used for parameter optimisation in ion channel modelling.

6.5.1 Origin of variability

Whole-cell patch-clamp data show a high degree of variability (Zhou et al., 1998; Vandenberg et al.,

2006; Beattie et al., 2018; Lei et al., 2019a,b), with differences in observed current kinetics between

experiments. As recordings measure whole-cell ‘macroscopic’ current one might expect variation

due to stochastic ‘microscopic’ ion channel opening. But in Chapter 4 we have observed currents to

be reproducible within a given cell — that is, the apparent kinetic variability upon protocol repeats in

the same cell at different times is much smaller than cell-to-cell variability. We expect the maximum

conductance of the current to differ between cells, due to varying cell sizes and gene expression

levels. Since each CHO cell over-expresses the same channel gene, there is no such obvious reason

for the current kinetics to vary cell-to-cell, especially if the cells are from the same culture and

recorded simultaneously under very similar conditions, as they were in our high-throughput data.

Each voltage-clamp experiment has a different cell membrane capacitance, pipette (or well-plate

in automated clamp) capacitance, voltage offset, series resistance, and leak current. This led us to

propose two competing hypotheses (as shown in Figure 6.7): Hypothesis 1 is that there are cell-

specific kinetics with no artefacts; and Hypothesis 2 is that there are identical kinetics for all cells with

cell-specific artefacts. A parameter optimisation technique was developed for Hypothesis 2, so that we

were able to optimise all the model parameters at once (cell-specific conductances and measurement

artefact parameters, with a single set of kinetic parameters shared by all the cells). One may also
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speculate an intermediate hypothesis between the two hypotheses, where conductance, kinetics and

artefacts are all cell-specific. We referred this all cell-specific assumption to as Hypothesis 3.

Models based on cell-specific conductances and kinetics (Hypothesis 1) or cell-specific conductances,

kinetics and artefacts (Hypothesis 3) included many parameters/degrees-of-freedom. The simpler

model of just cell-specific conductances and artefacts (Hypothesis 2) made better predictions, on

average, over all 124 cells that were analysed. Considering Occam’s razor, this makes the ‘identical

kinetics’ hypothesis, in which fewer assumptions are made, the favourable explanation. So it is more

plausible that the observed variability in the current traces arose from patch-clamp experimental

artefacts, that is imperfect amplifier compensations and imperfect leak current subtraction, than from

varying current kinetics. One might expect this result, since the current is carried by thousands of

identical ion channel proteins, especially in our over-expression cell line.

It should be noted that these results and this interpretation are specific to our preparation, and cell-cell

biological variability in kinetics in general cannot be ruled out. For instance, in native myocytes one

might speculate that differing subunit expression and other signalling-related changes in proteins’

states in the membrane (e.g. by PI3K signalling, see Ballou et al., 2015) could also confer real

biological variability in kinetics from cell to cell. But the results of this chapter suggests the major

factor causing apparent variability in expression system current kinetics will be artefacts introduced

by the patch-clamp experimental procedure, and offers an approach to address it.

6.5.2 Implication for whole-cell level modelling

Determining the origin of variability is particularly important for forward propagation of uncertainty

in cardiac modelling. If each ion current biologically exhibited a high-degree of variability in kinetics

from cell to cell, then a description of this variability for all currents would be necessary to make

predictions at the whole-cell level that accounted for it. However, if the majority of the variability is

due to experimental artefacts, then a single set of kinetic parameters could accurately describe the

physiology of each current type. If our findings also apply to myocytes, the standard approach to

building action potential models with a single set of kinetic parameters for each current is appropriate

(Ten Tusscher et al., 2004; O’Hara et al., 2011; Groenendaal et al., 2015; Lei et al., 2017a), and the

observed cell-cell variability in kinetics data should not be propagated forward in action potential

simulations (as some studies have examined, e.g. Pathmanathan et al., 2015). Nevertheless, we

still need an approach like the one demonstrated here to determine unbiased ion channel kinetic

parameters to build the most physiologically-relevant action potential models; as opposed to taking

the mean of biased recordings which could accidentally include some experimental artefacts within

the kinetics models (see Figure 6.12).

6.5.3 Implication for cardiac electrophysiology studies

Identifying ion current kinetics and separating out experimental artefacts is crucial for many cardiac

electrophysiology studies. For example, ion channel mutation studies often conclude with a statement

such as “there is a 5–10 mV shift in the half-activation potential” (a recent example is Ng et al. (2020);

see Clerx et al. (2018) for a list of reported shifts in INa). However, given the variability that we
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observe in patch-clamp data, often the cell to cell variability in half-activation potential can be in

the range of 10–15 mV. Therefore, it is important to separate out experimental artefacts from real

biological effects. The same principle applies to other cardiac electrophysiology studies, such as

drug studies and the basic characterisation of ion channel kinetics.

6.5.4 ‘Ideal’ compensation

The findings raise the question of whether a mathematical model of the voltage-clamp experiment

could remove the need for amplifier compensations altogether. This approach works well when we

have an almost perfect model of the current, as in the electrical model cell cases in Sections 6.3.3.1

and 6.3.3.2 (see e.g. Figure 6.6). But we do not recommend it in general, because unlike the reduced

model, the full voltage-clamp experiment model (Eqs. (6.24)–(6.32)) with an IKr model appeared

to produce spurious fits to real cell data. This behaviour is possibly due to IKr model discrepancy

— extra artefact components in the full model may attempt to ‘mop up’ real IKr current which the

approximations in this simple IKr model do not explain. We envision that a more detailed IKr model,

or techniques for accounting for discrepancy (Lei et al., 2020c), could allow us to infer parameters

for the full patch-clamp model. Yet our simplified voltage-clamp model (Eqs. (6.42)–(6.47)) appears

to account for imperfect amplifier compensation even with an inevitably imperfect mathematical

model of IKr kinetics.

We would therefore suggest fitting a simplified voltage-clamp model together with the model of

interest for the measured current to the data, such that the voltage-clamp model can account for

the experimental artefacts rather than the current model absorbing those non-physiological effects.

The assumption of ‘identical kinetics’ (i.e. whether one should use Hypothesis 2 or Hypothesis 3)

should be subject to the specific study; for expression system current kinetics measured in very

similar conditions as we have in this chapter, we expect ‘identical kinetics’ would be a reasonable

assumption, whereas for native myocytes further investigation would be needed.

6.6 Conclusion
A mathematical model was derived to describe the entire voltage-clamp experiment including

artefacts, imperfect amplifier compensations, and imperfect leak current subtraction. Using this

model, variability in a set of experimental observations could be explained either by varying current

properties or varying measurement artefacts. After comparing model predictions in each case, the

results suggest that most of the observed variability in a set of expression system patch-clamp data

measured in high-throughput under the same conditions is caused by experimental artefacts. These

varying experimental artefacts can be compensated in post-processing by fitting the mathematical

model for the patch-clamp experiment at the same time as fitting ion channel kinetics. This chapter

raises questions for the biological significance of any cell-cell variability in macroscopic ion channel

kinetics, and provides a new way for better correction of artefacts in patch-clamp data.

After applying the conventional methods for calibrating human induced pluripotent stem cell-derived

cardiomyocyte (hiPSC-CM) models in Chapter 3, we suspected better ion channel kinetics models
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are needed. We therefore moved on and looked at using experimental designs to improve models

of ion channel kinetics. We performed experimental design for hERG kinetics in Chapter 4, we

then showed why it is so important and extended applications including temperature dependence

of hERG in Chapter 5 and origin of variability in this chapter. In the next chapter, we revisit adult

cardiomyocyte and hiPSC-CM action potential models. We look into optimal experimental design

techniques in the literature and apply them to the action potential models. We ask how accurate the

kinetics models need to be in order to be able to calibrate a cell-specific whole-cell action potential

model.

6.7 Data and Software Availability
Data and software (GitHub repository):

https://github.com/CardiacModelling/VoltageClampModel
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Chapter 7

Tailoring Action Potential Models:
An Optimal Experimental Design
Approach and Real-World Problems

A publication I led relating to this chapter: Lei, C. L., Ghosh, S., Whittaker, D. G., Aboelka-
ssem, Y., Beattie, K. A., Cantwell, C. D., Delhaas, T., Houston, C., Novaes, G. M., Panfilov, A. V.,
Pathmanathan, P., Riabiz, M., dos Santos, R. W., Walmsley, J., Worden, K., Mirams, G. R., and
Wilkinson, R. D. (2020c). Considering discrepancy when calibrating a mechanistic electrophysiol-
ogy model. Philosophical Transactions of the Royal Society A, 378:20190349.

Contributions: I assisted in designing the study, and wrote code for and performed all the

simulation studies and data analysis.

Overview:

In previous chapters we designed experiments, constructed and validated models for the human Ether-à-go-

go-Related Gene (hERG) channel. In this chapter, we revisit fitting cell-specific whole-cell action potential

models for human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We first review a

range of optimal experimental design (OED) techniques from the literature, then we apply these techniques

to the action potential models. Similarly to Chapter 3, we focus on developing an experimental protocol

that allows us to identify cell-specific maximum conductance values for each current type. We consider the

potential for errors to be induced by discrepancy in the underlying ion channel kinetics by validating the

robustness of the design using multiple existing (adult human cardiomyocyte) ion channel kinetics models.

Through synthetic data studies, we show that large errors in conductance estimates can be introduced and there

are no simple fixes when there is discrepancy in the model of the kinetics. We then address the question of

how discrepant a model can be before whole-cell fitting fails, by replacing an existing hERG model with the

one that we developed in Chapter 5, as well as slightly perturbing the kinetics models. Results show that we

need to develop ion channel models with good accuracy to infer maximum conductances correctly. Finally we

also investigate the effect of the experimental artefacts that we studied in Chapter 6 on whole trace fitting.
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7.1 Introduction
In Chapter 3, we used a relatively simple approach to reparameterise the maximum conductance

values of a human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model using

experimental data. We assumed that the ion channel kinetics were perfectly described by the model

— i.e. there was no discrepancy in the ion channel kinetics models. We used simple conventional step

protocols to generate the voltage-clamp data. The results in that chapter revealed the limitations of

both the conventional step protocols and the ideal kinetics assumption.

There are two potential routes to continue the tailoring of the action potential model study from

Chapter 3. First, we could focus on the kinetics and apply a suitably designed protocol for each

current in a hiPSC-CM to fully characterise its ion channel electrophysiology. In Chapter 4 and

Chapter 5, we therefore focused on developing a new approach to experimental design to allow rapid

characterisation of the channel kinetics for the human Ether-à-go-go-Related Gene (hERG). This

showed the feasibility of accurately characterising the kinetics of an ion channel with a recording of

about 10–20 s; this approach can be extended for other ion currents in the action potential model as a

first route. Secondly, assuming the kinetics of each current to be known, we can focus on designing

experiments for inferring the maximum conductance values of the hiPSC-CM model, or indeed any

action potential model.

The assumption for the second route, i.e. fitting conductances to whole-cell recordings while using

ion channel kinetics models taken (or slightly adapted) from the literature, has been commonly used

(Whittaker et al., 2020). For example, Groenendaal et al. (2015) have proposed to use (cell-specific)

voltage-clamp and current-clamp data with a genetic algorithm to find maximum conductances in an

action potential model. Similarly Johnstone et al. (2016b) adapted a Bayesian approach with Markov

Chain Monte Carlo (MCMC) to infer maximum conductances using action potential recordings.

Many more inference approaches have been adapted, including multivariate regression (Sarkar and

Sobie, 2010), history matching (Coveney and Clayton, 2018), “population of models” (Britton et al.,

2013; Muszkiewicz et al., 2016), and moment-matching (Tixier et al., 2017), and all of them assumed

“out of the box” or slightly modified kinetics models when fitting maximum conductances.

In this chapter, we perform synthetic data studies to explore the feasibility of the second route. First

we apply model-based optimal experimental design (OED) to optimise the protocol for inferring

the maximum conductance values for cardiac action potential models. We assume the ion channel

kinetics are known. Along with our comparison of optimised protocols, we also compare against

two other voltage-clamp protocols: one from Chapter 3 and one from Groenendaal et al. (2015).

Second, we examine whether any of these designs is robust to the discrepancy of kinetics that we

expect when fitting the maximum conductance values and handling real data. However, we find that

none of these designs is robust to kinetics discrepancy, which is not surprising as OED does not take

into account model discrepancy. We then investigate a series of further questions: if our approach in

Chapter 4 creates a ‘good’ kinetics model, are we able to retrieve the correct contribution of each

current to whole-cell electrophysiology? If we apply channel-specific blockers and perform current

subtraction, a widely used technique thought to isolate each current’s contribution, are we able to
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find the ‘correct’ current contributions? Finally, if our experimental measurements suffer from the

voltage-clamp artefacts discussed in Chapter 6, can we still reliably infer the maximum conductance

values?

7.2 Optimal Experimental Design (OED)
In the design of experiments, the results of OEDs are experimental designs that are optimal with

respect to some statistical criteria — optimal design measures. Formally, we consider a nonlinear

differential equation model of the form

dx
dt

= f (x, u(ζ), θ), (7.1)

y = h(x, u(ζ), θ), (7.2)

where x is the vector of model states, u is the vector of system inputs, θ is the vector of model

parameters, f and h are the systems of equations, and y is the vector of observable model outputs

we compare with data. We assume that the system input u can be parameterised with ζ, i.e. ζ is

the vector of parameters that controls the experimental conditions. For example, if u is an applied

voltage-clamp, ζ could be the voltages and durations of its steps. The optimisation of the experimental

design procedure is then defined as

ζ̂ = argmin
ζ

Φ(ζ), (7.3)

where the function Φ represents the optimal design measure to be minimised.

All optimal design measures discussed in this chapter assume the model calibration process described

in Chapter 2, such as least-square estimation, maximum likelihood estimation, or posterior estimation;

if one considers a different calibration process, such as bounded-error parameter estimation (also

known as guaranteed parameter estimation) or Approximate Bayesian Computation (ABC), then a

different set of design measures should be used (Gottu Mukkula and Paulen, 2017). All methods

discussed in this chapter are implicitly conditional on the chosen set of model equations, i.e. they

are only optimal for the models used during the design. This is a general limitation of model-based

OED.

In the rest of this section, we discuss several optimal design criteria based on local sensitivity analysis

(LSA), global sensitivity analysis (GSA), and Shannon (information) entropy. There is another class

of optimal design criteria that stems from Bayesian statistics and decision theory (see e.g. Raiffa

and Schlaifer, 1961; Lindley, 1972; Chaloner and Verdinelli, 1995). However, as we will see in

Section 7.5, the limitation in ‘real-world problems’ is the potential model discrepancy rather than the

variants of the designs. Therefore, for simplicity, in this chapter we show results for only the criteria

discussed in the rest of Section 7.2 below.

7.2.1 Local designs

The sensitivity matrix based on local sensitivity analysis (LSA), SL(ζ | θ = θ̂), is defined as

(SL)i j =
∂yi

∂θ j

∣∣∣∣∣∣
θ=θ̂

. (7.4)
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Here the subscript i (row) in yi runs through all model outputs in y and all sampled time points tk1,

and the subscript j (column) θ j goes over all model parameters in θ. The Fisher Information Matrix

(FIM) is given by

FIM(θ) = ST
L Σ−1 SL, (7.5)

where Σ is the covariance matrix of the measurement data (noise), in this chapter we assume data are

a single output (a single current trace) with independent and identically distributed (i.i.d.) Gaussian

noise through time such that Σ = σ2I with σ constant and I the identity matrix.

Many local design criteria are based on the parameter (co)variance matrix defined as

Cθ = E
[
(θ −E[θ])(θ −E[θ])T

]
≥ FIM(θ)−1, (7.6)

where E[·] denotes the expected value. This describes the covariance of the estimates of a fixed true

parameter set2. For any unbiased estimator, where the expected value is equal to the true value of the

parameter set, a lower bound for the variance is given by the inverse of the FIM (the inequality in

Eq. (7.6)), known as the Cramér-Rao bound. Therefore, to evaluate the local design criteria based on

the covariance matrix, we use the the Cramér-Rao bound and calculate FIM(θ)−1 instead (Walter

and Pronzato, 1997; Schenkendorf et al., 2018). In fact, equality with the Cramér-Rao bound would

be achieved as K (number of observations) approaches infinity

lim
K→∞

Cθ = FIM(θ)−1. (7.7)

For proof of Eq. (7.7) see, for example, Pant (2018). Note, Cθ, FIM, and SL all depend on the choice

of the system input ζ.

A common class of the local design criteria is the ‘alphabetic family’ of design criteria (Kiefer, 1959;

Walter and Pronzato, 1997). These criteria each represent a cost function to be minimised, a subset

of them (A-optimal, D-optimal, and E∗-optimal designs, Atkinson and Donev, 1992) are shown in

Table 7.1, where λmax(X) and λmin(X), respectively, denote the maximum and minimum eigenvalues

of a matrix X.

Local design criteria Cost functions

A-optimal design ΦA = trace([ST
L SL]−1)

D-optimal design ΦD = det([ST
L SL]−1)

E∗-optimal design ΦE∗ = λmax([ST
L SL]−1)/λmin([ST

L SL]−1)

Table 7.1: Local design criteria for OED. Here we have assumed the parameter covariance matrix Cθ for some
given model parameters θ can be approximated as σ−2[ST

LSL]
−1, where σ−2 is dropped in the design criteria

(cost functions) as it is assumed to be constant. E∗ is the modified E criterion.

The design criteria in Table 7.1 are parameter based criteria (Atkinson and Donev, 1992): these

cost functions (as functions of the FIM) can be interpreted as properties (the shape and size) of the

1That is, for No model outputs and Nt time points, i = 1, 2, . . . , No, No + 1, No + 2, . . . , No × Nt.
2Note that under this framework, the true parameters do not vary, as opposed to the Bayesian framework where the true

parameters can be treated as random variables.
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confidence hyper-ellipsoid (a generalisation of the confidence interval for multivariate statistics)

for the parameters θ (Vanrolleghem and Dochain, 1998; Banga and Balsa-Canto, 2008). The A-

optimal design can be interpreted as minimising the average variance of the confidence ellipsoid;

the D-optimal design minimises the volume of the confidence ellipsoid; and the E∗-optimal design

minimises the ratio of the length of the largest to the smallest axis, making the ellipsoid as spherical

as possible. Therefore, by improving these properties of the confidence ellipsoid, the uncertainty

of the inferred parameters using the data measured under these optimal design protocol would (in

theory) be reduced, as we will see in Section 7.4.2.

One obvious limitation of the local designs is that they are local, i.e. they depend on a particular

choice of the model parameters (θ = θ̂ in the equations above). Hence the design is only guaranteed

to be optimal for that particular choice of parameters. However, we do not know the true model

parameters in the experiments by definition. This issue can be alleviated by replacing the local

sensitivity with an averaged sensitivity matrix

E[(SL)i j] =

∫
Θ
(SL)i j p(θ j)dθ j, (7.8)

where p(θ j) is the probability density function of the jth parameter, defined over a domain Θ (a

subspace of the parameter space). The integral in Eq. (7.8) can be approximated using Monte Carlo

simulations. Although this averaged sensitivity matrix has been shown to give a more robust design

(Chu and Hahn, 2013), it is does not take the multivariate interaction into account (Schenkendorf

et al., 2018), and hence the framework of global sensitivity analysis (GSA) comes into play.

7.2.2 Global designs

Next we explore global design criteria that do not rely on a particular choice of the model parame-

ters θ.

7.2.2.1 Global sensitivity analysis-based design criteria

One of the most straight forward ways of doing GSA-based design is by replacing the SL in Table 7.1

with a sensitivity matrix based on GSA methods (Rodriguez-Fernandez et al., 2007; Kucerová et al.,

2016; Schenkendorf et al., 2018). We can use variance-based methods such as the Sobol method

(also known as the Sobol indices Sobol, 2001). The Sobol method decomposes the variance of the

model output into fractions, and attributes these variances to parameters or sets of parameters, usually

referred to as the order. The first-order Sobol index attributes these variances to each parameter

θ j alone; whilst higher order Sobol indices attribute the variances to different combinations of

parameters. These variances are calculated using a set of parameters sampled within a domain Θ,

a subspace of the parameter space. These parameters can be sampled using various methods, for

example Monte Carlo methods, or some low-discrepancy sequences (including Sobol sequences

or Latin hypercube sampling); we used the extension of the Sobol sequence by Saltelli (2002) and

Saltelli et al. (2010) in this chapter. The first-order Sobol sensitivity index is given by

(SG)i j =
1

Var (yi)
Var
θ j

(
E
θ− j

[yi | θ j]

)
, (7.9)
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GSA-based design criteria Cost functions

A-optimal design ΦGSA
A = trace([ST

G SG]−1)

D-optimal design ΦGSA
D = det([ST

G SG]−1)

E∗-optimal design ΦGSA
E∗ = λmax([ST

G SG]−1)/λmin([ST
G SG]−1)

Table 7.2: Global design criteria for OED based on a generalisation of the local design criteria in Table 7.1
using a GSA method.

where Var (yi) is the total variance of the model output yi, Varθ j(X) = Eθ j(X
2) − (Eθ j(X))

2 denotes

the conditional variance only over parameter θ j, and Eθ− j [ · ] indicates the expected value taken over

all parameters θ except parameter θ j. Criteria using SG are given in Table 7.2. As a side note, one

may further include higher order Sobol indices for analysing multivariate parameter interactions and

dependencies (Kucerová et al., 2016), but we do not investigate these here for simplicity.

However, there are some limitations for GSA-based design criteria in Table 7.2:

1. the normalisation term in Eq. (7.9) may pose a problem, as minimising the inverse of Eq. (7.9)

may lead to a reduction of the total variance Var (yi) (i.e. worsen the sensitivity/estimates for

all model parameters) to improve some of the designs (Schenkendorf et al., 2018); and

2. GSA-based measures may not necessarily simplify to local measures for linear problems,

which may lead to sub-optimal designs and counter-intuitive outcomes (Chu and Hahn, 2013;

Schenkendorf et al., 2018).

7.2.2.2 Shannon entropy-based design criteria

The Shannon entropy (Lindley, 1956) can be used to avoid some of the issues from GSA-based

design criteria. A GSA-based Shannon entropy has been used as a design criterion in fields outside

cardiac modelling (Auder and Iooss, 2008; Li et al., 2017a; Schenkendorf et al., 2018). The criteria

(cost functions to be minimised) in Table 7.3 emphasise different features of an OED (Schenkendorf

et al., 2018): (a) The criterion Φall
SE tries to ensure a balanced sensitivity of all model parameters

(i.e. giving an equally distributed values of the first-order Sobol indices) over the whole time series;

(b) Φseg
SE limits the number of parameters contributing at a given time point or time segment (e.g. over

a voltage-step), i.e. minimising any nonlinear correlation effects; (c) ΦOU aims to get a high overall

output variance, and hence a high parameter sensitivity.

Global design criteria Cost functions

Shannon entropy (SE) (over entire time horizon) Φall
SE = −1/

∑
j

(∑
i (SG)i j ln

∑
i (SG)i j

)
Shannon entropy (SE) (at time segment s: T 1

s to T 2
s ) Φseg

SE = −
∑

s
∑

j

(∑T 2
s

i=T 1
s
(SG)i j ln

∑T 2
s

i=T 1
s
(SG)i j

)
Overall output uncertainty (OU) ΦOU = 1/

∑
i Var (yi)

Table 7.3: Global design criteria for OED based on a GSA method and Shannon entropy∗; adapted from
Schenkendorf et al. (2018). Subscripts i (row) run through all model outputs in y and all measured time points
tk, subscripts j (column) run through all model parameters θ. For Φseg

SE , we split all measured time points tk
into multiple segments s that run from tk = T 1

s to tk = T 2
s .
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Following Schenkendorf et al. (2018), one may use a multi-objective design to incorporate all the

desired features listed in Table 7.3 by optimising

ΦSE = w ·
(
Φall

SE Φseg
SE ΦOU

)T
, (7.10)

where w is a weighting vector. Although ΦSE is powerful and intuitive, a drawback is that there is no

general guidance for choosing the weighting vector w; a poor weighting can lead to a sub-optimal

design that is just as bad as using a local design, see Schenkendorf et al. (2018, Figure 9). In this

chapter, we use the weighting vector w = (10 0.1 1) as discussed in Schenkendorf et al. (2018).

7.3 Formulating Models and Experiments for
OEDs

In this section we discuss the formulation of the models as well as the experiments for the OED in

this chapter.

7.3.1 Action potential models for OEDs

Designing experiments with a single model

We consider an electrophysiology action potential model under an ideal (no artefacts) voltage-clamp

experiment, and we aim to optimise the voltage-clamp protocol for conductance identification. We

use the Paci et al. (2013) model as a ‘proposed model’, the same as Chapter 3; in practise, we may

design the experiments and perform the fitting to data with this proposed model which would be our

current best representation of reality. The observed current Iobs can be expressed as

Iobs(t) =
∑

j

g j · x j(V , t), (7.11)

where g j is the maximum conductance and x j(V) is some nonlinear function of the voltage V for the

current of type j, and we consider the same set of major currents as in Chapter 3. These nonlinear

functions x j(V) are the product of the ‘kinetics’ (describing the voltage-dependent opening and

closing of ion channels in response to changes in membrane voltage, denoted as f j in Eqs. (2.11)

and (2.15)) and the ‘driving term’ of the currents (either the Ohmic V − ES term or the GHK flux

equation described in Chapter 2). We assume that these kinetics terms are known (and correct), and

we later explore the results of discrepancy in these kinetic models. We are interested in finding all g j,

which determine the magnitude of the currents when the channels are fully open, therefore we have

θ = {gNa, gCaL, gKr, gKs, gto, gNaCa, gK1, gNaK} (7.12)

to be inferred.

In this case, the observed current Iobs is the output defined in Eq. (7.2). The vector of system inputs

u describes the applied voltage-clamp protocol V(t), see Section 7.3.2 for the parameterisation of

the protocol.
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Designing experiments with an averaged model

Each OED is optimal for the model used to perform the design. However, we may want to get a

design that is optimal for a range of biological assumptions instead of focusing on one particular

model, so that the same data can be used to study multiple similar models. We also consider using

averaged model kinetics terms for x j; instead of using only one model to optimise the experiment

while the true data generating process could potentially be more similar to another model. Therefore,

instead of using Eq. (7.11) from a single model, if we have M1, . . . MNm models, we use the output

from

Iobs =
Nm∑
l=1

wMl IMl
obs, (7.13)

to design the experiments, where wMl is the weighting term.

Here we use four models to represent an averaged model with a uniform weight wMl = 1/4 for

each model: the Ten Tusscher et al. (2004) model, the Fink et al. (2008) model, the O’Hara et al.

(2011) model, and the Paci et al. (2013) model. Next we consider averaging the cost functions for

each model, instead of the cost function of the averaged model. And below, we take this idea a step

further — we consider randomly generated models with current kinetics randomly sampled (with

replacement) from the set of models to calculate the average cost function, which we termed the

“bootstrapped kinetics models”, instead of using the original models directly.

Designing experiments with bootstrapped kinetics models

Another approach to considering different model kinetics is to use samples for different combinations

of the model kinetics, instead of using an ‘averaged’ model. That is we generate many samples of

Iobs by randomly swapping in current kinetics x j from different models Ml. The idea is to evaluate

an optimal design measure for each of the samples, and optimise on the average of these measures.

Suppose we have Nm models and each model consists of N j currents, we define a set of random integer

variables {X1, X2, . . . , XN j} where each element is a realisation, drawn from the set {1, 2, . . . , Nm}.

Then each sample s of Iobs,s is constructed as

Iobs,s =
∑

j

g j · x j(V , t | MX j). (7.14)

In this way, we would not be limited to the fixed combinations of the current kinetics used in the

original models Ml. Each sample s of Iobs,s is used to calculate an optimal design measure Φs, and

we find the voltage-clamp protocol parameters for an optimal experimental design by minimising

ζ̂ = argmin
ζ

E
s
(Φs(ζ)) . (7.15)

And we use the same set of models as for the averaged model.

The differences between this method and the one proposed in the above sections are that first, here we

treat each current’s x j as an individual component from a model, and combinations of these currents

give samples of Iobs,s; we use a subset of all the (48) permutations, where we randomly sampled 100

of Iobs,s. Second, we optimise the average of the optimal design measures instead of computing an

optimal design measure using an averaged model.
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7.3.2 Experiments to be optimised

We design the experiment by varying the system input u(ζ), the voltage-clamp protocol V , and we

choose it to be a piecewise function defined as

u(ζ) = V(t) =


V1, 0 ≤ t < T1

V2, T1 ≤ t < T2
...

...
VN , TN−1 ≤ t < TN .

(7.16)

Where the vector of parameters that defines the voltage-clamp protocol is

ζ = {V1, T1, V2, T2, . . . , VN , TN} (7.17)

for a N-step protocol; equivalently we can define ∆Ti = Ti − Ti−1 with T0 = 0, then we obtain

ζ = {V1, ∆T1, V2, ∆T2, . . . , VN , ∆TN}. (7.18)

In order to ensure the resulting voltage-clamp protocol V is feasible to be run experimentally, we

constrain the protocol to have Vi ∈ [−120, 60]mV and ∆Ti ∈ [50, 2000]ms for all i, which defines

the protocol parameter space. We choose N to be 20 in this chapter; a simple extension would be to

try using different values of N.

In theory, the voltage-clamp protocol can be replaced with any arbitrary function, e.g. a sum of

sinusoidal functions, as long as it can be parameterised with some vector of parameters ζ. However,

the benefit of choosing this piecewise step function is that it can be directly applied in any patch-

clamp system, including some of the high-throughput automated patch-clamp systems such as the

SyncroPatch from Nanion Technologies used in the previous chapters of this thesis.

7.3.3 Optimisation of the protocols

To perform the optimisation of the voltage-clamp protocol as defined by Eq. (7.3), we optimise the

design measures discussed in Section 7.2 by varying the protocol parameters ζ in Eq. (7.18). The

protocol was initialised with parameters ζ = ζ0 randomly sampled uniformly within the defined

boundaries (the protocol parameter space). Optimisations were performed using the Covariance

Matrix Adaptation Evolution Strategy (CMA-ES) algorithm as described in Chapter 2. This was

repeated 10 times with different initial protocol parameters, and the best result out of all repeats was

used and presented in the next section.

To compute the Sobol indices, we define a hypercube for the model parameter space Θ, where each

conductance value g j in Eq. (7.12) can be scaled from e−2 ≈ 0.14 to e2 ≈ 7.39 times its original

value. We use the Saltelli et al. (2010) extension of a Sobol sequence to generate 100 parameter

samples within this parameter space Θ for computing the Sobol indices. The score calculated with

100 samples versus 500 samples at the optimum of the A-criterion were 3.2 and 2.4, respectively,

when the optimisation was initialised from a score of 3.3 × 104. Since we would like to find only a

representative protocol based on these scores for comparison, we believe the uncertainty in the score
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is acceptable, but we would increase the number of samples if using GSA-based scores for a final

selected experimental design.

To numerically calculate the local sensitivity matrix SL, we use the first-order central difference

to approximate the local derivatives with a step-size of 0.1% of the parameter values. It may be

worth noting that although LSA-based criteria require local derivatives, we are not truly interested in

(local) infinitesimal changes when designing the protocols, hence a reasonable approximation of the

derivatives is typically enough.

7.4 Results of the OED Methods
As discussed in the previous sections, we have seven design criteria (the LSA A-, D-, E∗-designs,

the GSA A-, D-, E∗-designs, and the Shannon entropy design) and three types of model (the Paci

et al. (2013) model, averaged model, and bootstrapped kinetics models), giving us in total 21 optimal

designs. The resulting optimised protocols using different optimal designs are shown in Figure 7.1

with the corresponding Iobs simulated using the Paci et al. (2013) model . Each of the protocols

appears to elicit rich and varied dynamics of the model current, as expected from the optimal designs

which maximise the information for inference.

In this section, we explore different ways to evaluate the ‘quality’ of these optimised protocols. We

evaluate the protocols by assessing some of the properties that we would like or expect them to

have. First, we might expect a good ‘all-round’ protocol from this set (that is by definition optimal

under a given design criterion) not to be the worst under another criterion, and on average to be good

under all criteria. This comparison is somewhat theoretical, as it still relies on the design criteria that

we defined. Second, taking a practical approach, we generate synthetic data under these optimised

protocols, then ask: can we identify the parameters correctly using these synthetic data? And how

does the error, if any, and uncertainty in the parameters vary between these optimised protocols?

As a benchmark, in addition to the comparison between the optimised protocols, we include two

further voltage-clamp protocols: the one from Chapter 3 and one from Groenendaal et al. (2015).

Both protocols were used for the same cell-specific conductance fitting as our optimised protocols

in this chapter. The protocol from Groenendaal et al. (2015) in particular was designed, manually

with expertise, to elicit the distinct kinetics of the different currents; whilst the one from Chap-

ter 3 is a more conventional voltage-clamp protocol that is simpler and probably more familiar to

electrophysiologists.

7.4.1 Cross-measure evaluations

In this subsection we evaluate the 21 optimised protocols by comparing their performance across all

the design measures; a design measure is defined by the choice of the model and a design criterion.

We define a cross-measure matrix M for each optimised protocol, such that each entry Mi, j is the

criterion j score for this protocol with currents generated by model i, with 1 < j < Nmeasure and

1 < i < Nmodel. The models indexed by i are the Ten Tusscher et al. (2004) model, the Fink et al.

(2008) model, the O’Hara et al. (2011) model, the Paci et al. (2013) model, the averaged model, and

160



Chapter 7

100

0

LS
A

 A
Single model Averaged model

A

Bootstrapped models

100

0

LS
A

 D

100

0

LS
A

 E

100

0

V
o
lt

a
g

e
(m

V
)

G
S

A
 A

100

0

G
S
A

 D

100

0

G
S

A
 E

100

0

S
h
a
n
n
o
n

Time (5000 ms)

5

0

5

0

5

0

5

0

C
u
rr

e
n
t

(A
/F

)

5

0

5

0

5

0

B C

D E F

G H I

J K L

M N O

P Q R

S T U

Figure 7.1: The optimised protocols (shown in grey, values on left axis) using different criteria and the
corresponding Iobs (shown in red, values on right axis) simulated using the Paci et al. (2013) model. Rows
are protocols optimised with different optimal design criteria: the LSA A-, D-, E∗-designs, the GSA A-, D-,
E∗-designs, and the Shannon entropy design. Columns are protocols optimised based on different types of
models: the single model, averaged model, and bootstrapped kinetics models.

the bootstrapped kinetics models; the last three were used to optimise the protocols, and the first three

are now also included to assess how these optimised protocols perform for currents from different

models. The criteria indexed by j were the LSA A-, D-, E∗-designs, the GSA A-, D-, E∗-designs,

and the Shannon entropy design, respectively.

The numerical values for different cost functions are not directly comparable, so we normalise the

values. Normalisation should be better than using a simple ranking as it should highlight outliers

better. Outliers concern us here, because we expect the best protocols to be robust to the model

(possible current kinetics in reality) and to perform well under all measures. Ideally we would like to

have a protocol that is good under all criteria and all possible models of kinetics. The normalisation
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Figure 7.2: Cross-measure evaluations for the optimised protocols, compared against the benchmark protocols.
(A) The normalised cross-measure matrix M for the best protocol, Protocol K, optimised using the GSA
A-criterion and the averaged model. (B) The matrix for the worst protocol, Protocol V, adapted from Chapter 3.
(C) The mean of the normalised cross-measure evaluations for all of the optimised protocols, as well as the
benchmark protocols.

for each entry is calculated using Mi, j = (Mi, j − ai, j)/(bi, j − ai, j) × 100%, where ai, j and bi, j are the

minimum (best) and maximum (worst) scores seen across all the Protocols A–U3 at the entry i, j (i.e.

with this criterion and current model).

Two examples of Mi, j are shown in Figure 7.2A and B. Figure 7.2A shows our best protocol design,

the OED for averaged model under GSA A-criterion (Protocol K), which performs well under all

measures and model currents. The worst protocol, the benchmark protocol adapted from Chapter 3

(Protocol V) shown in Figure 7.2B, performs badly for most of the design measures, which may

be expected as it is not designed using any of these measures. ‘Best’ and ‘worst’ protocols in this

subsection were decided based simply on the mean of all entries in M. This averaged score for

each optimised protocol k, together with the benchmark protocols, is shown in Figure 7.2C. The

3Note the normalisation (percentile) was calculated with only the optimised protocols, i.e. without the benchmark
protocols, for clarity. Therefore the percentiles shown in Figure 7.2B are not necessary to be within 100%.
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Groenendaal et al. (2015) protocol beats one of our Shannon designs which is impressive given its

manual design.

Figure 7.2C shows that the protocols based on multiple models (middle and bottom rows) are

consistently better than those based on only the Paci et al. (2013) model (top row), apart from the

LSA E criterion. This may be expected as the protocols based on only one model may perform

relatively badly under other models. We also noticed that the protocols based on the LSA E criterion

are worse than the other LSA criteria. Finally, the protocols based on the GSA criteria are better than

(or similar to) their LSA counterparts, apart from the A-design using the Paci et al. (2013) model.

We consider these cross-measure evaluations are theoretical as they rely on the design criteria that

we defined. Next, we move on to assessing the optimised protocols through a practical evaluation.

7.4.2 Practical evaluations

In this subsection we evaluate the optimised protocols from a practical point of view. Similarly to

the approach taken in the previous chapters, we generate synthetic data under these protocols with

synthetic noise, and we ask whether we can identify the parameters in Eq. (7.12) correctly if we

know the ground truth model.

We start by generating synthetic data using the Paci et al. (2013) model. The same type of synthetic

noise as in Chapter 3 is used ∼ N(0,σ2) with σ = 0.15 A/F. Then the same model is used to fit the

synthetic data, to test the ideal case where we know the ground truth kinetics. Similarly to Chapter 3,

we reparameterise the models with a scaling factor s j for the maximum conductance g j, where s j = 1

is the original literature value. The posterior distribution of the parameters are defined in the same

way as described in Section 2.6 in Chapter 2. Uniform priors are usedU(0.04, 25) for the scaling of

the conductance values, which is wider than the subspace we used for computing the GSA to test its

robustness for parameters outside the design parameter space.

The posterior distributions of the parameters were estimated using a Monte-Carlo based sampling

scheme — a population MCMC (Jasra et al., 2007) algorithm with adaptive Metropolis (see Chapter 2)

as the base sampler. We ran three chains for the population MCMC, each with 4 × 104 samples, and

discarded the first 104 samples as warm-up period. The final chains had R̂ < 1.1 for all parameters,

implying the chains were converged (see e.g. Gelman et al., 2013). The resulting posterior estimation

(using all three chains) is shown and analysed in Figure 7.3.

For models without discrepancy in ion current kinetics, the two most successful optimal designs

were the LSA A-design for the single model (Protocol A) and the averaged model (Protocol B),

in terms of reducing the uncertainty in the inferred parameters, as shown in Figure 7.3A; whilst

the benchmark protocols resulted in considerably wider posterior distributions than most of the

optimised protocols. Each chain returned a posterior distribution over the parameters, since all chains

converge and they are all very similar to each other, we use all three chains to compute the marginal

parameter distributions (per parameter). The mean (over all the parameters) standard deviation of

these distributions is shown in Figure 7.3B for all of the protocols. Often the number of data samples

(or data points) in the i.i.d. Gaussian likelihood that we use is a major factor determining the width
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Figure 7.3: The posterior distribution of the parameters for the synthetic study, generated with the Paci
et al. (2013) model and fitted with the same model. (A) The marginal posterior for the best two protocols:
LSA A-design for the single model (Protocol A) and the averaged model (Protocol B), and for the worst two
protocols: the two benchmark protocols (Protocols V and W), according to the mean standard deviation of
the marginal posterior. (B) The mean standard deviation of the marginal posterior for all of the optimised
protocols, as well as the benchmark protocols.

of the posterior. Here even for the protocol from Chapter 3 (Protocol V) which is much longer in

duration (hence more data samples) than any of the optimised protocols, the width of its posterior is

still bigger than other protocols. This shows that the OED methods were successful in bringing down

the parameter uncertainty.

Interestingly, even though the protocol by Groenendaal et al. (2015) (Protocol W) was designed

specifically to tease out different dynamics of the ionic currents, the width of the posterior is similar

to that of the protocol from Chapter 3. Also, although the optimised protocols from the Shannon

entropy measure are better than the benchmark ones, they are consistently worse than the other

optimised protocols. This could be due to the choice of the weighting vector w, as discussed by

Schenkendorf et al. (2018). However, we will not investigate further, because this involves tuning
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hyperparameters (optimising the optimal design), also the other designs have achieved the same

objective.

7.5 Influence of Discrepancy in Model Kinetics
In the above section, OED showed improvements in reducing the parameter uncertainty when the

‘correct’ model was used (the same as the model generating the synthetic data). However, in reality,

we expect discrepancy between our models of ion channel kinetics and the true kinetics, as discussed

in Chapter 3. In this section, we test the effects of the common assumption that the kinetics are

represented well enough to fit conductances to whole-cell measurements. We ask, how would

discrepancy in the ion current model affect estimates of the maximum conductances (Eq. (7.12)) in

an action potential model? How wrong can the current model be before we fail to identify the current

contributions to whole-cell electrophysiology? We also ask whether using channel-specific blockers

and performing current subtraction help? The subtraction approach is widely used and thought to

isolate each current’s contribution, but does it allow us to fit ‘correct’ current contributions when

there is discrepancy present?

7.5.1 Issues with discrepant kinetics models

To test what would happen to the inferred current contribution using discrepant kinetics models,

we generated synthetic data with the Fink et al. (2008) model to represent the ground truth (in the

same way as described in Section 7.4.2) and fitted the Paci et al. (2013) model (to that synthetic

data) to represent a proposed mathematical model we might fit. There are many variants of cardiac

action potential models in the literature, as discussed in Chapter 2, and they vary hugely, see for

example Beattie et al. (2018) for a comparison between the existing IKr models. Each of these models

attempted to describe the very same physiological system, and there is no obvious reason that a

particular model is closer to reality than it is to other models. We then use the difference between

literature models to mimic the difference between model and reality, to illustrate the community’s

uncertainty in the kinetics of the ionic currents. Therefore the use of different models to represent the

size of the discrepancy between reality and models is not unrealistic.

We repeated the fitting of discrepant kinetics models with all the 21 (in Figure 7.1) plus two

benchmark protocols, and compared their performance. Due to the model discrepancy in the kinetics,

directly comparing the maximum conductance values may overstate the error. For example, if the

current kinetics in the fitted (potentially discrepant) model result in an open probability twice as large

as the true process that generated the data, then we would expect to infer a maximum conductance

value that was only half that used to generate the data, but the current could still be very close to the

truth. Therefore, instead, the goodness of fit was ranked using the mean of the root-mean-square

error (RMSE) for each individual current under the action potential clamp (black lines) shown in the

top panels of the following figures.

Figure 7.4A shows the maximum a posteriori (MAP) estimate for one of the optimised protocols

(Protocol H). Synthetic data were generated with the Fink et al. (2008) model and shown in grey.
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Figure 7.4: Model fitting and prediction results for a discrepant model. (A) The Paci et al. (2013) model (blue)
fitted to the synthetic data (generated from the Fink et al. (2008) model, grey) using Protocol H (the protocol
is shown in the top panel). (B) The model simulation for each current under an action potential clamp (top
panels, black lines) for the ground truth model and the fitted models using two different protocols. The true
model is shown in green. The fitted model using Protocol H plotted in blue, gave the lowest averaged RMSE
for each individual current shown here; the fitted model using Chapter 3’s Protocol V shown in orange for
comparison, which is better in some situations (e.g. INaCa) but worse in others (IKr, IKs, and INaK).

The fitted Paci et al. (2013) model (blue) does not give a perfect match to the data due to model

discrepancy. However, the agreement between the calibrated model output and the synthetic data

would often be considered acceptable if these were real experimental data, see for example Chapter 3

and Groenendaal et al. (2015). Therefore, it may be tempting to conclude that this model is calibrated

well, and that the model discrepancy is not critical. But the prediction results of the MAP estimate

for the best RMSE (Protocol H, blue) and the worst (Chapter 3, orange) for an action potential clamp

are shown in Figure 7.4B. Even for the protocol with the best RMSE, the fit (blue) was far from ideal.

Some major currents such as INa and ICaL are not able to match the ground truth at all, and would

make very bad predictions in certain situations, e.g. drug block of these currents. These results raise

serious concerns about discrepancy in current kinetics when fitting maximum conductance values to

experimental data.

166



Chapter 7

7.5.2 Fitting with slightly discrepant kinetics

One of the most obvious solutions to the issue posed in the previous subsection is to get the kinetics

‘right’, at least to such a degree that the maximum conductance values can be identified acceptably.

This is in fact the approach that we have been working towards in the previous three chapters for the

hERG channel.

In Chapter 5, Figure 5.12 showed that the difference between predictions from our 37 ◦C hERG

model and the IKr Markov model by Fink et al. (2008) is similar in magnitude to the difference

between our model’s predictions and the experimental data. In this subsection, we use the differences

between the IKr model from Fink et al. (2008) and our 37 ◦C hERG model from Chapter 5 as a guide

for the extent of the discrepancy we might encounter in practice; the RMSE between the two models

under the action potential clamp was ∼ 0.22 A/F. To generate a model with slightly discrepant

kinetics, we randomly perturbed the kinetic parameters of the Fink et al. (2008) model for each

current; each original kinetic parameter was multiplied by (1 + δ), where δ is a random variable that

follows N
(
0,σ2

δ

)
. The standard deviation σδ was chosen such that the RMSE between the current

from the original model and the perturbed model is about 0.22 A/F. Here we consider the original

Fink et al. (2008) model as the ground truth (to generate synthetic data), and the slightly perturbed

model as a proposed mathematical model (for fitting).

We repeated the fitting of the slightly discrepant kinetics models with all the 21 (in Figure 7.1) plus

two benchmark protocols, and compared their performance. The goodness of fit was again ranked

using the mean of the RMSE for each individual current under the action potential clamp (black lines)

shown in top panels of Figure 7.5. The results of the MAP estimate for the best RMSE (Protocol E,

blue) and the worst (Chapter 3’s Protocol V, orange) are shown in Figure 7.5. For Protocol E, the

fit (blue) was able to infer all current contributions quite well, and much better than those shown in

Figure 7.4B; none of the currents have more than 29% (mean ± standard deviation: 18 ± 8%) RMSE

percentage error in the action potential clamp predictions. For Protocol V from Chapter 3 (orange),

although most of the currents were inferred correctly, it still missed (when comparing the area under

the curve, the amount of charge carried by the current) IKr by almost a factor of two, as well as the

two small currents INaCa and INaK.

Comparing Figure 7.4B to Figure 7.5 shows that the level of discrepancy in the kinetics can appre-

ciably affect the fitting of the maximum conductance values. Such maximum conductance values

fitting methods have started being widely-used in the cellular cardiac electrophysiology community

(Whittaker et al., 2020). But to use these methods safely we need low discrepancy in kinetics.

Applying the approach developed in the previous three chapters to develop accurate models of as

many individual ion channel kinetics as possible is one way to reduce discrepancy, so that we can

be confident with the accuracy of the kinetics models. The aim would be to improve the accuracy

of kinetics models so that our individual current contributions could be fitted as well as Figure 7.5

rather than Figure 7.4B.
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Figure 7.5: The model simulation for each current under an action potential clamp (top panels, black lines) for
the ground truth model (Fink et al., 2008) and the two fitting results using a slightly discrepant kinetics model.
In the slightly discrepant model, each current’s kinetics were perturbed to give an RMSE of about 0.22 A/F
between the slightly discrepant model and the ground truth model. The true model is shown in green. The
model fitted using Protocol E plotted in blue, gave the lowest averaged RMSE for each individual current trace
shown here; the model fitted using Chapter 3’s Protocol V is shown in orange for comparison.

7.5.3 Sequential dissection using current-specific blockers

As an alternative to getting kinetics models that are good enough to fit simultaneously to a single

current trace, a temporary solution that one might think of is to use selective ion channel blocking

molecules. By applying a channel-specific blocker one can almost completely shutdown a given type

of current Ix. If we then remeasure the leftover current, the difference between the two recordings

should be mainly the blocked current Ix. We can then fit the conductance of the blocked current

directly to this subtracted current, and the rest of the conductances using the leftover current. This

procedure can be repeated with various current-specific blockers to to get isolated currents from a

single cell. This approach was used by Banyasz et al. (2011) who used a total of four blockers in the

study and termed it a “sequential dissection” experiment.

In this subsection, we simulate such a sequential block experiment, whilst assuming the original

model discrepancy issue from Section 7.5.1. Without considering the experimental feasibility, we

assume that we could apply eight4 current-specific blockers and perfectly isolate all current types.

Figure 7.6 shows the simulations and the predictions of (panel A) the calibration protocol (Protocol B)

and (panel B) an action potential clamp using the fits to isolated currents (dashed purple), compared

against the fitting without applying specific blockers (blue). Some of the currents show an improved

fit and prediction, for example INaCa and INaK, but some are even worse, such as IKs.

The cause of a poor prediction even with isolated currents from specific blockers is twofold. Firstly,

some of the kinetics simply do not match well through a simple scaling, see for example IKr in

4The eighth blocker is needed to make sure we isolate the last current from some other small currents and leak current.
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Figure 7.6: A comparison between the fits to isolated currents (dashed purple) and the results in Figure 7.4B
(blue) using the Paci et al. (2013) model and synthetic data generated with the Fink et al. (2008) model (green).
(A) Model simulation of each current under calibration Protocol B. By definition here, each isolated current is
scaled to give a least-squares fit to the synthetic data. (B) Model prediction for each current under an action
potential clamp (top panels, black lines).

Figure 7.6. Secondly, even if the kinetics match during the calibration, the prediction can still be

incorrect when the current undergoes different dynamics in a new situation, as demonstrated by IKs

in Figure 7.6. The top panel (A) shows the fitted traces of IKs under Protocol B, and that the fitting

169



Tailoring Action Potential Models: An Optimal Experimental Design Approach and Real-World
Problems

with isolated current (dashed purple) is better than the one without (blue). However, in the action

potential clamp prediction in the panel below (B), the isolated current (dashed purple) was inferior.

To understand this second issue, imagine we try to fit a straight line (e.g. y = x+ 1) to an exponential

curve (y = ex) around zero (x ≈ 0) by scaling the straight line, we can find a best fit for it around

zero (in this case the scaling is simply unity) but the prediction for any value far away from zero

would still be wrong. Even if we try to repeat this example with a different region of data (say x

around 10), the resulting fit will still give an incorrect prediction for values outside the calibration

data.

This subsection has demonstrated that even if we had a perfect specific blocker for each current,

simply fitting conductance values will not work with the level of discrepancy shown in Figure 7.4.

We showed this issue by fitting one literature model to another, one may suspect it was because

we compared an hiPSC-CM model to an adult cardiomyocyte model, but the differences between

literature models of the same cell type can easily be larger than we have used in this section (see

for example Beattie et al., 2018; Lei et al., 2020c). It is therefore particularly important to first get a

‘good enough’ kinetics model before fitting conductances using the approach shown in this chapter.

7.6 Effects of Ignoring Experimental Artefacts
Finally, we examine the effect of ignoring experimental artefacts during conductance inference, by

generating synthetic data with the full voltage-clamp experiment model in Chapter 6 whilst assuming

an ideal voltage-clamp when fitting to data (as in previous sections and most, if not all, literature

examples). We use Eqs. (6.24)–(6.32) to simulate voltage-clamp experiments, where Iion in this

case is the lumped currents in the Paci et al. (2013) model. When generating the synthetic data,

we perform the typical compensations as in real patch-clamp experiments, including voltage-offset

correction, membrane (slow) and pipette (fast) capacitance compensations, supercharging, and series

resistance compensation (see Chapter 6). In the synthetic data, we also perform a leak correction

using Eqs. (6.33) and (6.34), and filter the capacitance spikes by removing the first 2 ms after each

voltage step, to emulate the post-processing for real experiments.

Similar to the previous chapter (see also the notation), we randomly generate artefacts using the

following distributions

V†off
∼ N(0, 1.5) (mV), (7.19)

Rs ∼ lnN(12.5, 2) (MΩ), (7.20)

Cm ∼ lnN(98.7, 5) (pF), (7.21)

Cp ∼ lnN(4, 1) (pF), (7.22)

gleak ∼ N(1, 0.1) (nS). (7.23)

Eleak was set to be −80 mV. We assume that the measurements are performed on an automated

patch-clamp system for hiPSC-CMs; the values are taken from the measurements in Chapter 4

and Chapter 6, and Cm was taken from Paci et al. (2013). We also assume 80% series resistance

compensation, and that the amplifier estimations have normally distributed errors with a standard
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Figure 7.7: Simulations of the membrane voltage and observed current under Protocol B, using 50 samples of
artefact parameters of a realistic voltage-clamp model (shown in grey). The cardiomyocyte model is the Paci
et al. (2013) model, and its simulation using the ideal voltage clamp assumption is shown in dashed lines.

deviation of 5%, i.e. after a realisation of Rs we sample R∗s from N(Rs, 0.05 × Rs); similarly for the

other compensations and machine estimated values (i.e. those denoted with ‘∗’ in the equations).

Figure 7.7 shows 50 realisations of the realistic voltage-clamp synthetic measurements using the

above distributions, under Protocol B (averaged model LSA A-design). The membrane voltage in

the realistic voltage-clamp model (grey) deviates from the ideal membrane voltage or the command

voltage (dashed black line) due to the imperfect compensations described in Chapter 6. Similarly, the

observed current in the realistic voltage-clamp model (grey) is ‘contaminated’ and differs from the

Paci et al. (2013) model simulated with the ideal voltage clamp assumption.

To investigate the effect of ignoring experimental artefacts during the parameter inference, we

generate 500 samples of artefact parameters (using the above distributions) under Protocol B. We

then fit the same cardiomyocyte model, the Paci et al. (2013) model (simulated with an ideal voltage-

clamp experiment) to each synthetic whole-cell current trace. Figure 7.8A shows an example of the

fitted trace (dashed purple) compared to the model trace generated with the realistic voltage-clamp

(green). The fitted trace shown is the result of one of the 500 inferred parameters, and it is chosen

with the parameters that are closest to the mean of the 500 inferred parameters (blue histograms in

Figure 7.8B).

Figure 7.8B shows the histograms of the inferred parameters for the 500 full voltage-clamp experi-

ments. The resulting parameters inferred in the presence of experimental artefacts generated with

the above distributions are shown in blue. First of all, compared to uncertainty in the parameters

where the same protocol and cardiomyocyte model were used (Figure 7.3), the possible error in the

parameters due to experimental artefacts is much larger. Furthermore, not only a random error (the

width of the histograms in Figure 7.8B) but also a systematic error (a shift of the whole histograms)

is introduced to some of the inferred parameters as the histograms move away from the ground truth

(dashed lines). For example, the inferred conductance values for INa are consistently smaller than the

true value, because the effect of series resistance can shift the current-voltage (I-V) relationships of

the measured INa (Marty and Neher, 1995; Sherman et al., 1999; Montnach et al., 2020). Also, the
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Figure 7.8: Fitting results of the Paci et al. (2013) model when ignoring experimental artefacts generated using
a realistic voltage-clamp model developed in Chapter 6. The fits was performed using the averaged model LSA
A-design. (A) Shows an example of fitted trace (dashed purple) and the realistic voltage-clamp model (green)
with 12.5 MΩ mean series resistance. The parameters of this example are chosen as the closest to the mean of
the blue histograms in the bottom panel. (B) Histograms of 500 inferred parameters. The inferred parameter
affected by the experimental artefacts with 12.5 MΩ mean series resistance is shown in blue (approximating
automated patch); while the mean series resistance of 4 MΩ is shown in orange (approximating manual patch).
Both are plotted with transparency to show the overlap.
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conductance of ICaL is almost halved whilst IKs is consistently larger, potentially because they are

‘compensating’ each other. The scaling of INaK permeability ranges from zero to almost two. Such

an unidentifiability issue can be due to the effect of imperfect leak compensation, as the dynamics

of INaK and the leftover Ileak are very similar (when the ionic concentration is clamped), hence INaK

‘mops up’ the leftover Ileak in the data.

The parameters listed above were taken from an automated patch-clamp system, but most of the

parameters are similar to many of the manual patch experiments except the series resistance. Although

automated systems have a much higher throughput compared to manual patch-clamp systems, they

tend to have a higher series resistance. The series resistance for automated systems is about 12.5 MΩ
in Chapter 4; whilst some high quality manual measurements present series resistance less than 5 MΩ
(e.g. Ma et al., 2011). To compare the effect of the series resistance, we also generate another set of

synthetic data with Rs ∼ lnN(4, 1)MΩ to represent a manual patch-clamp experiment, the results

are shown in orange in Figure 7.8B. Similar to the mean Rs = 12.5 MΩ (blue) case, the inferred

parameters are affected by both random and systematic errors, but to a lesser extent. For example,

the inferred conductance values of INa are now closer to the ground truth (dashed line). The inferred

conductance values for both ICaL and IKs cover the true values. The inferred INaK permeability is not

affected by reducing Rs, reflecting the random error is not due to the series resistance.

The results shown above have opened the question of whether we should always take these experi-

mental artefacts into account, such as having the voltage-clamp model as part of the data generating

process during inference, as we did in Chapter 6. An alternative would be to average the data before

performing model inference. However, such an approach may reduce only the random error induced

by the artefacts, i.e. reducing the width of the histograms in Figure 7.8B, and it does not alleviate the

systematic error, hence the bias remains in the inferred parameters.

7.7 Discussion and Conclusions
This chapter combines lessons that we have learned from the previous chapters. We have first applied

optimal experimental design (OED) to various action potential models to design voltage-clamp

protocols for fitting maximum conductances while assuming kinetics are known. This is, to our

knowledge, the first time such an approach has been taken in cardiac cellular electrophysiology. The

optimised protocols successfully reduced the uncertainty in the inferred parameters, compared to the

conventional protocol that we used in Chapter 3. We then consider problems that are likely to occur in

the real-world. Firstly we expect discrepancy in our models of ion channel kinetics. We showed that

with the level of discrepancy similar to the differences between models in the literature, none of the

protocols were able to infer the maximum conductance values accurately. This issue can be rectified

by a ‘good’ kinetics model. However applying channel-specific blockers and performing current

subtraction will not completely fix the issue of discrepancy in current kinetics. Finally, artefacts in

experimental measurements such as those shown in Chapter 6 will also introduce both random and

systematic errors into the inferred conductance values.
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We explored various designs adapted from the OED literature. Most of them were able to improve

the uncertainty in the inferred parameters compared to the benchmark protocols. We tried to seek

for the best protocol amongst the OED generated protocols. However, we were not able to identify

the best one, as each of them perform slightly differently under different situations. For example

Protocol K was the best in the cross-measures comparison, Protocols A and B were better in reducing

parameter uncertainty, but Protocol H was slightly more robust against discrepancy that we tested.

We found that the protocols based on averaged model were consistently (slightly) better than the

others, which may be a better model for designing voltage-clamp protocols.

Next, we considered issues that we may encounter when applying the ‘perfect kinetics’ assumption

to real data; we questioned how discrepant a model of current kinetics can be before whole-cell

conductance fitting fails. This assumption has been commonly used as fitting conductances to whole-

cell (mostly voltage-clamp and/or action potential, sometimes also calcium transient) recordings

while using ion channel kinetics models taken or slightly adapted from the literature has recently

become popular (Whittaker et al., 2020). For example, Groenendaal et al. (2015) have proposed to

use (cell-specific) voltage-clamp and current-clamp data to fit the maximum conductances of several

currents in an action potential model. Similarly, various inference approaches have been developed

or adapted, including genetic algorithms (Groenendaal et al., 2015), multivariate regression (Sarkar

and Sobie, 2010), MCMC (Johnstone et al., 2016b), history matching (Coveney and Clayton, 2018),

“population of models” (Britton et al., 2013; Muszkiewicz et al., 2016), and moment-matching (Tixier

et al., 2017), but all of them assumed “out of the box” or slightly modified kinetics models when

fitting maximum conductances.

We assessed the susceptibility to kinetics discrepancy when fitting conductances to only whole-cell

voltage-clamp experiments; we concluded that the approach (or assumption) is indeed susceptible to

kinetics discrepancy. However this issue is not only applied to voltage-clamp experiments but also

action potential recordings (such as current-clamp or optical mapping for membrane voltage). In Lei

et al. (2020c), a publication that I led, we demonstrated that fitting conductances to action potential

recordings with discrepant kinetics models can lead to spurious results and predictions, very similar

to what we showed in Section 7.5.1. Therefore fitting conductances can suffer from discrepancy in

the current kinetics regardless of using voltage-clamp or action potential data.

The results shown Section 7.6 and Section 7.5 are, perhaps, ‘best case scenarios’. In reality, we

expect model discrepancy and experimental artefacts to be a joint-problem. That is, we might not be

able to isolate these two issues easily, and hence the errors that we observed in these two sections are

potentially only part of the error to be induced in reality. We believe once methods for solving model

discrepancy and experimental artefacts become more mature, we would need to consider and solve

them together.

As we described earlier in the chapter, we believe there are two possible routes to continue from

the work presented in the previous chapters. One route would be to apply an approach similar to

Chapters 4–6 for as many current types as possible, such that we could construct a cell-specific

model from the channel-level (kinetics) to cell-level (conductance). Another route would be to design

protocols for fitting conductances while assuming the kinetics of each current to be known. This
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chapter assessed the feasibility of the second route. We showed that the second route is possible only

for the perfect kinetics case and for the slightly discrepant kinetics case. The perfect kinetics case is

most probably impossible when applied to real data. To achieve the slightly discrepant kinetics case,

we believe approaches such as those developed in Chapter 4 will help. Therefore, we can take the

second route only if we have confidence that the kinetics models are as accurate as those shown in

Section 7.5.2.

We anticipate that developing methods to quantify the sensitivity of parameters to the ‘level of

discrepancy between model and data’ would be tremendously useful for assessing the credibility of a

model calibration process (and its resulting models). If an inference process relies heavily on the

perfectness of the model equations, e.g. the ‘distance’ between the posterior and the true parameter

is sensitive to the level of discrepancy, then caution should be taken when applying such approach

to real data as we usually expect uncertainty in the model equations. We also note that one may

first need to define ‘level of discrepancy’, which might not be trivial. As we see in Section 7.5, the

performance of the inference process depends on how discrepant the current kinetics are. Although

we were not able to directly quantify when the inference process will fail, we were able to learn

qualitatively that small discrepancy was acceptable; whilst if the difference between model and

reality is about the same size as the difference between literature models, it would lead to erroneous

results. A potentially useful approach to extend our investigation would be to analyse the distance

between the posterior and the true parameter (or simply the RMSE of the fitted currents in our case)

as a function of the model error term δ introduced in Section 7.5.2 (or as a function of the RMSE

between the model to fit and the ground truth).

To conclude, this chapter showed that applying optimal experimental design (OED) to voltage-clamp

protocols can improve fitting maximum conductances while assuming kinetics are known, compared

to the conventional protocol that we used in Chapter 3. We then considered problems that are likely to

occur in reality. We assessed the assumption of perfect current kinetics, and considered the potential

for errors to be induced by discrepancy. We also looked at the errors introduced by the voltage-clamp

artefacts described in Chapter 6. In the next chapter, we will discuss how each chapter contributes to

the field of cardiac cellular electrophysiology, and finish with suggestions for future research.
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Discussion

The goal of systems biology is to provide a quantitative understanding of complex biological

systems using mathematical and computational models. Mathematical modelling and computational

simulation have been a crucial tool for basic research in cardiac electrophysiology for decades,

and has provided remarkable insights into many of the physiological mechanisms (Noble, 2008,

2011; Fink et al., 2011). More recently these quantitative cardiac models have begun to be used

predictively and are transitioning into clinical and pharmaceutical applications (Mirams et al., 2012;

Li et al., 2019). The use of mathematical modelling for prediction in these safety-critical applications

requires a high level of confidence as well as accurate quantification of the uncertainty in the model

predictions.

Chapters 3–7 of this thesis address different aspects of cardiac electrophysiology modelling that

are essential to making credible models and quantifying their uncertainty (see Figure 1.1). In

Chapter 3, we tailored the maximal conductance parameters in human induced pluripotent stem cell-

derived cardiomyocyte (hiPSC-CM) cell-line specific models using a method based on conventional

voltage-clamp protocols. During this exercise we assumed the current kinetics were known perfectly

— we identified this as a strong limitation that was likely to be our main source of error. We

then designed experiments for rapid characterisation of the kinetics of the human Ether-à-go-go-

Related Gene (hERG) channel in Chapter 4, and studied their temperature dependence in Chapter 5.

Chapter 6 then investigated the origin of the variability observed in the previous chapters by deriving

a mathematical model for the artefacts in patch-clamp experiments. Finally, in Chapter 7 we applied

optimal experimental design (OED) to voltage-clamp protocol design for action potential models

and discussed issues that we expect to encounter when using these methods in real experiments.

We concluded that we will need more accurate models of many ion currents to do cell-specific

cardiomyocyte modelling.

In this chapter, I summarise and discuss the main contributions of this thesis to the field of cardiac

cellular electrophysiology. I then discuss the potential future studies that extend the presented work.

177



Discussion

8.1 Main Contributions
Chapter 3 reparameterised an existing hiPSC-CM mathematical model from the literature to a new set

of experimental data collected in an automated high-throughput system, creating a set of cell-specific

hiPSC-CM models. This chapter is primarily exploratory, providing motivation for the rest of this

thesis, but it also has valuable implications for drug testing. There has been a significant increase

in the popularity of hiPSC-CMs as an in vitro model for drug screening and, as a pillar of the

Comprehensive in vitro Proarrhythmia Assay (CiPA) strategy, the use of hiPSC-CMs is anticipated to

become a routine part of the cardiac safety testing pipeline. It is therefore critical to understand how

to interpret hiPSC-CM data (including intra- and inter-cell line variability) and to translate findings

in hiPSC-CMs to the adult human situation. This chapter demonstrates that mathematical models are

a promising tool to integrate data, gain mechanistic insights and perform this translation.

We showed that differences between hiPSC-CM cell lines can be analysed and understood using

tailored computational models. Furthermore, even models based on relatively simple methods (e.g.,

scaling maximum conductances) and a limited set of measurements (two inward current and one

outward current experiments) can lead to improved predictions of action potential duration (APD)

under baseline and drug-applied conditions. Tailoring cell line-specific hiPSC-CM models would

also benefit precision and personalised medicine. However, we noticed that the obtained fits and

predictions of the ion current profiles could not be recreated as well as we would have liked, and we

hypothesised this was because the kinetics of ion currents were not captured accurately enough by

the existing models. We therefore anticipated that better characterisation of ion current kinetics may

be needed when tailoring these models.

In Chapter 4, I presented a novel design of experiments for high-throughput characterisation of hERG

potassium channel kinetics. We developed inference methods that work well with this novel design

and tested them thoroughly using synthetic data. We then fitted a mathematical model of hERG to

results of over 100 experimental single-cell voltage-clamp measurements collected simultaneously on

an automated patch-clamp platform. The short duration of the new protocol also allowed collection

of extensive data for validation of the models and enabled us to study experimental variability and its

origins in Chapter 6.

We demonstrated the feasibility of automated and rapid development of mathematical models from

quick and high-throughput experiments. The short duration experiments on high-throughput systems

can produce a large number of successful recordings, and are still able to collect cell-specific

information for parameterising ion channel models fully. This approach avoids issues with averaging,

allows variability studies, and could therefore have benefits for personalised medicine. Given

the variability that we see in the data, low N numbers may not be appropriate to draw rigorous

conclusions, e.g. if we randomly select 10 cells from the full dataset, the error in estimated statistics

can be large compared to the full dataset.

The novel short protocol approach also enables us to study the ion channel kinetics under different

conditions rapidly with large numbers of recordings to enable uncertainty quantification (UQ). We

applied this method to study the temperature dependence of hERG in Chapter 5; we could also apply
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this approach to study other conditions such as mutations, and it could be adapted to study many

other voltage-dependent ionic currents.

The work described in this chapter increases the utility of automated high-throughput systems.

For example, our method can potentially be adapted and used to investigate not only how much

the hERG channel is blocked by a drug, but also how that drug influences channel kinetics. Our

model parameterisation based on a single experiment can potentially show which parameters are

affected by a drug, thus shedding light on the drug-binding mechanism. This might be useful for

the CiPA initiative, as both automated high-throughput systems and in silico modelling constitute

the core of the initiative (Fermini et al., 2016; Chang et al., 2017). Our approach may give us a

better understanding of the pharmacological properties of drugs in the screening process and hence

a better pharmaceutical safety assessment. The method also provides robust tools for the UQ that

is an essential component of an in silico assay. With such large numbers of repeats, we can also

incorporate an accurate description of the cell-to-cell (or rather experiment-to-experiment as shown

in Chapter 6) variability in the in silico modelling as part of the UQ for safety-critical predictions

(Mirams et al., 2016).

In Chapter 5, we investigated the temperature dependence of hERG kinetics. Ion channel currents

are highly sensitive to temperature changes. Yet, because many experiments are performed more

easily at room temperature, it is common to extrapolate findings to physiological temperatures using

Q10 coefficients or Eyring rate theory. We applied the short, information-rich protocol developed

in Chapter 4 and identified how kinetic parameters change as a function temperature. We found

that the commonly used Q10 and Eyring formulations are incapable of describing the parameters’

temperature dependence. A more generalised Eyring relationship fits the data better, but still does

not match the patterns seen when refitting a parameters at a range of temperatures.

The findings in this chapter have implications for the accuracy of Q10 coefficients in electrophysiology,

and show that care is needed to avoid misleading extrapolations in the many scientific and industrial

pharmaceutical applications of Q10 coefficients. First, extrapolating temperature effects in ion channel

kinetics is commonly used in action potential modelling. For example, many cardiac action potential

models (Greenstein and Winslow, 2002; Iyer et al., 2004; Tanskanen et al., 2005; Sampson et al.,

2010) adapted the Mazhari et al. (2001) hERG model which used Q10 values from Zhou et al. (1998)

to extrapolate room temperature recordings to physiological temperature. Within action potential

models, many other ion current models (such as INa, ICaL, etc.) are also based on experiments

performed at different temperatures (Niederer et al., 2009), most of which are then corrected via

Q10 extrapolations (Courtemanche et al., 1998; Ten Tusscher et al., 2004; O’Hara et al., 2011; Paci

et al., 2013). Our results therefore raise concerns about the accuracy of many of the existing current

models within action potential models in the literature, and in Chapter 7 we saw that discrepancy

in current kinetics (e.g. introduced by an inaccurate temperature extrapolation) can lead to further

complications when inferring maximum conductances to build accurate action potential models.

Second, since many of the drug screening platforms work only at ambient temperature, measurements

at different temperatures not only give rise to a large source of (deterministic) variation (Kirsch et al.,

2004; Yao et al., 2005) but also introduce the problem of translation to physiological temperatures.
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This translation can be particularly problematic when an imperfect temperature model is used, such

as the commonly used Q10 coefficient. Given that we have shown that Q10 coefficients cannot capture

the full temperature dependence of the parameters in our model of hERG kinetics (as shown in

Figure 5.8), and given that different drugs target different kinetics, then a previous finding that there

are no common sets of Q10 coefficients to describe the kinetics of drug block (Windley et al., 2018),

is consistent with our results. The work raises a similar question as to whether the temperature

dependence of drug binding kinetics follows the (Generalised) Eyring relationship? Our results show

that extreme caution should be taken when using temperature-extrapolated in vitro drug screening

data in in silico models for risk prediction.

We observed a high degree of experiment-to-experiment variability in hERG kinetics measurements

in both Chapter 4 and Chapter 5. In Chapter 4, we also compared the experimentally estimated

reversal potential with the theoretical Nernst potential, showing the difference was distributed close

to zero with a standard deviation of 1.36 mV. Since all of the measurements were performed at

the same time with the same temperature and extra- and intra-cellular solutions, we would expect

the variability in reversal potential to be much smaller than this observed variability. A difference

between the membrane voltage (what the cell experienced, Vm) and the command voltage (what we

applied, Vcmd) could cause the apparent shift in the reversal potential, and this led us to inspect the

hypothesis that artefacts could cause such an offset.

In Chapter 6, we developed a mathematical model for patch-clamp experiments to investigate the

possible effects of experimental artefacts. The artefact components of the model include series

resistance, membrane and pipette capacitances, voltage offsets, imperfect compensations made by

the amplifier for these phenomena, and leak current. The model gives insight into how experimental

artefacts are introduced and into the performance of the hardware compensation procedures; for

example, the model shows that the effect of series resistance in distorting the applied voltage is

proportional to the current size, so for a given series resistance and a fixed percentage compensation,

then the bigger the current the larger this artefact.

We investigated three possible scenarios where variability in the observations can be explained

by either varying current kinetics, measurement artefacts, or both. Remarkably, by assuming that

variability arises exclusively from measurement artefacts, the model is able to predict (on average)

the observed variability better than assuming cell-specific ion current kinetics (either with or without

measurement artefacts). The assumption that variability arises from measurement artefacts also leads

to a smaller number of model parameters, and hence is a more favourable explanation.

The work described in Chapter 6 demonstrated that a voltage-clamp experiment model can unify

the kinetics of IKr measured across many cells. This result has strong implications for verification,

validation, and uncertainty quantification (VVUQ) in the field, because perhaps apparent variability

in kinetics of ion currents can be explained by experimental artefacts. This finding would make

modular building of action potential models simpler, as one would not need to propagate all the

observed variability in e.g. Chapter 4 for each current when predicting action potentials. Instead,

we can use the voltage-clamp model to filter out the non-physiological uncertainty and keep only a
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single set of physiologically-relevant kinetics model parameters, and propagate forward uncertainty

in these into action potential models.

Our model represents the voltage-clamp experimental set-up and could be applied to any voltage-

clamp data gathered with a standard patch-clamp amplifier. Our full model of the voltage-clamp

experiment could be particularly useful for currents like the fast sodium current (INa) where the

time constants are similar to those in the capacitance artefacts, and imperfect compensations for the

series resistance and supercharging can strongly affect measurements of its kinetics (see for example

Montnach et al., 2020).

The observation and the approach taken in this chapter also apply to other fields in computational

or mathematical biology. One does not only have to handle the parameter uncertainty in the model

caused by the data, but also needs to consider how the experiments were performed. We should

not blindly assume the experimental data are ideal, and we should examine whether there are

uncertainties, biases and artefacts in the data used to fit and test the model. If these factors are not

properly handled, the models that we fit to these data can absorb all these effects and lead to incorrect

interpretations or predictions.

The work presented in Chapters 4–6 is not limited to hERG, but can be applied to many other

voltage-gated ion channels in the human heart (see also Section 8.2) or elsewhere in the body (such

as neurons, skeletal muscle cells, etc.). We also anticipate that these methods can be extended to

voltage-clamp experiments for ion channels in plants and other animals.

Finally, in Chapter 7, we revisited parameterisation of the maximum conductances in cardiac action

potential models. We applied a set of optimal experimental design (OED) methods to these problems

and found that they all improved the inferred parameter uncertainty as intended under the (commonly

used) assumption of perfectly-known kinetics. Through synthetic data studies, we then considered

potential real-world problems that we expect to encounter when applying these methods. We found

that if we assume that the differences between existing current kinetics models in the literature (for

human cardiomyocyte action potentials) can represent the differences between a model and reality,

then the inferred maximum conductance values can be erroneous. Fitting maximum conductance

values when there is discrepancy in the current kinetics can suffer from this ‘practical unidentifiability

due to discrepancy’ issue whether using voltage-clamp or action potential (such as current-clamp or

optical mapping for membrane voltage) data (Lei et al., 2020c). These examples show that caution is

needed for the field as a whole, as such approaches have recently become popular (Whittaker et al.,

2020).

This perfect kinetics assumption has been widely used, due to the complexity of the problem and

a large identifiability issue if we try to infer both kinetics and conductance parameters (Dokos and

Lovell, 2004; Fink and Noble, 2009). Our synthetic data studies have implications for VVUQ in the

field and address one of the sources of uncertainty — structural uncertainty (or model uncertainty).

By evaluating the model uncertainty of the current kinetics, we assess the validity of the commonly

used assumption. Since fitting conductances is strongly influenced by the accuracy of the models

of current kinetics, quantifying model uncertainty is crucial to the quantification of the overall
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uncertainty in this calibration process. However, a calibration process may not always be such

susceptible to structural uncertainty. For example, in Chapter 5, we showed that even though our

hERG model is not the same as the Markov model used by Fink et al. (2008), the two models were

able to predict currents under action potential clamps very closely. Therefore it is very important to

study, understand, and quantify the effects of structural uncertainty, which perhaps does not only

apply to cardiac electrophysiology modelling but is also relevant to mathematical and computational

modelling more generally.

We then examined the case where we are able to get a ‘good but not perfect’ model for current

kinetics, using methods that we developed in the previous chapters as examples. We showed that the

difference between our 37 ◦C hERG model and the IKr Markov model by Fink et al. (2008) is similar

to the difference between our hERG model predictions and the experimental data in Chapter 5. We

used this difference as a guide to the level of model discrepancy in a ‘good’ model, and showed that

we are able to infer the correct current contributions at this level.

We also tried simulating a sequence of current-selective blockers to infer the maximum conductances,

a method suggested in the literature, while again assuming discrepant kinetics using two literature

models. The striking result was that even if we had a perfect specific blocker for each current (which

we do not have) and every current were to be perfectly isolated and subtracted, it would still not be

good enough to get the right current contributions if the kinetics are too discrepant. According to

the above synthetic data studies, it is therefore important to create a set of predictive and accurate

kinetics models, before fitting maximum conductances to construct whole action potential models.

One might think using the sequential selective blocker experiments as demonstrated in Banyasz et al.

(2011) with an action potential clamp would allow us to fit both the maximum conductance and get a

‘reasonable’ kinetics during an action potential. Indeed, that would allow us to get a good response

of the kinetics to an action potential, however, the dynamics of an action potential clamp are not rich

enough to identify all the model parameters. Therefore if we were able to perform sequential blocker

experiments, instead of using an action potential clamp, it would be more beneficial to run variants

of the staircase or optimised protocols for each current, such that we can infer both the maximum

conductance and kinetics in a truly cell-specific way.

Lastly, we considered introducing the experimental artefacts that we studied in Chapter 6 to the

synthetic data studies, while assuming an ideal voltage clamp during fitting. The inferred parameters

suffered from both random and systematic errors, which may be expected as we saw the same problem

when considering hERG kinetics parameters in Chapter 6. For example, there was a systematic

underestimation of the INa contribution. Therefore the effects of experimental artefacts in typical

patch data cannot be neglected (by post-processing or by the model), and we have to understand their

influence on the experiment that was performed and the data that were recorded. It is important for

us to handle the experimental artefacts during parameter inference in a similar way to Chapter 6,

rather than leaving the action potential models to absorb any non-physiological artefacts.
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8.2 Future Work
This thesis presented a first attempt at applying (model-driven) experimental design to high-

throughput experiments in cardiac electrophysiology, leading to better characterisation and validation

for the models. There are areas that can be improved upon, but the work presented in this thesis

demonstrates the feasibility and usefulness of such an approach in this field, as well as opening up

several research directions to follow up on.

The first extension of Chapter 4 would be to apply the developed high-throughput rapid characterisa-

tion approach to study other conditions such as mutations. As briefly discussed in Chapter 4, it is

possible to apply the approach to study other conditions, and we have extended that study to consider

the temperature dependence of the hERG kinetics in Chapter 5. High-throughput patch clamp has

been used to study hERG mutants (Ng et al., 2020); similarly to the temperature dependence study,

the staircase protocol could be applied to characterise these hERG mutants. The resulting models

could be used for improved assessment of clinical phenotypes arising from patients carrying hERG

mutations, such as Long QT Syndrome Type 2 (LQT2) which can result in the potentially fatal

arrhythmia, Torsade de Pointes (TdP).

A further extension of this work would be to adapt the staircase protocol to different ion channel

currents. Although this extension is not trivial, one can first adapt the voltage values to relevant

voltages that would open and bring the current of interest to different gating states, and change the

duration of the steps to reflect the time constants of the current. Another potential avenue to improve

the staircase protocol would be to apply the OED techniques to the hERG kinetics and perhaps set

the initial protocol as the staircase protocol. In this way, OED could be used to improve the staircase

protocol to reduce the inferred parameter uncertainty. This optimisation is not needed for the hERG

model that we used in Chapter 4, as we were able to identify the parameters reliably, but this would

be particularly useful for more complex Markov models where the staircase protocol fails to identify

the parameters, see for example Fink and Noble (2009).

It would also be useful to extend the approach developed in Chapter 4 to study pharmaceutical

compounds. For example, one may design protocols to allow high-throughput systems to be used

to investigate not only how much the hERG channel is blocked by a drug, but also the kinetics of

drug binding and whether the drug influences underlying channel kinetics. This may provide a better

quantitative characterisation of drug action than simply the concentration at which hERG channel

activity is reduced by 50% (the IC50 value) under a certain protocol.

A possible extension of the study in Chapter 5 would be to investigate whether it was the temperature

dependence model (e.g. the Typical Eyring formulation) or the hERG model structure being ‘incorrect’

which leads to an inaccurate temperature inter- or extrapolation. One way to address this question

would be to assume the opposite of what we did in Chapter 5, i.e. one could assume the Eyring

formulation is true for any transition of ion channel from one conformational state to another, and

repeat the work in the chapter with different hERG models; a similar idea was suggested by Tsien

and Noble (1969), using Q10 coefficients to study rate-limiting processes, i.e. the model structure.
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This could be a potential way to perform model selection1, namely, pick the hERG model that gives

the correct temperature inter- or extrapolation using the Typical Eyring formulation. However, it is

worth noting that this approach implicitly assumes the channel conformational states do not change

with temperature, as we use the same model structure with different temperatures.

It would be useful to generalise the voltage-clamp experiment model in Chapter 6 to current-clamp

experiments. This generalisation should be possible by introducing an extra feedback circuit to the full

voltage-clamp model for standard patch-clamp amplifiers. However, note that some microelectrode

amplifiers, such as the Axoclamp and the Axoprobe, have a different headstage design, hence a

re-analysis of their circuits would be needed to build a similar model for these amplifiers.

An interesting question is raised after seeing that the optimised voltage-clamp protocols are not very

robust against the experimental artefacts in Chapter 7. Is it possible to design optimal experiments

that also take experimental artefacts into account, such that they are robust to these artefacts? One

way of addressing this is to maximise the information needed for parameter inference at the same

time minimise the sensitivity to the experimental artefacts. In this way, cardiac modellers may not

need to worry about the experimental artefacts in Chapter 6 introducing systematic biases to their

physiological models. Alternatively, we could aim to make artefacts easy to parameterise too (as the

reversal ramp aimed to do in Chapter 4).

8.3 Concluding Remarks
In this thesis, I have shown how experimental designs using mathematical and computational

models can be applied to aid uncertainty quantification (UQ) for high-throughput cardiac cellular

electrophysiology experiments. These designs can save a lot of time when performing experiments

and make examining various experimental conditions much quicker. When combined with appropriate

statistical methods, short information-rich protocols allow us to quantify uncertainty when fitting

parameters to data. Automated high-throughput experiments also allow us to quantify the variability

between experiments, and hence are a first step in allowing us to determine the source of the observed

experimental variability.

It is crucial to understand what the experimental data mean and whether it is appropriate to use a

physiological model to study the observations. By developing mathematical models and statistical

techniques, we can track down not only the uncertainty in physiological model parameters but also

the uncertainty caused by experimental artefacts, to examine the consequences of these different

sources of uncertainty on model predictions. A better understanding of uncertainty in the experiments

will yield a better quantification and higher confidence in the physiological model and its predictions.

I have also begun to explore the effects of model discrepancy in the context of model fitting and

predictions. When fitting (conductance) parameters of a cardiac action potential model to data,

discrepancy in the model (kinetics) can give to misleading UQ results and predictions, raising

interesting questions about the importance of the model accuracy for further exploration. Overall,

1Picking the most appropriate or the best model in a (given) set of models.
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experimental design and UQ techniques applied to cardiac cellular electrophysiology modelling will

greatly improve the development of models and will provide deeper physiological understanding of

variability. These methods will be valuable for all cardiac electrophysiology modelling predictions,

including clinical and pharmaceutical applications.
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Appendix A

Abbreviations

APD action potential duration

CHO Chinese Hamster Ovary

CiPA Comprehensive in vitro Proarrhythmia Assay

CMA-ES Covariance Matrix Adaptation Evolution Strategy

DAD delayed afterdepolarization

EAD early afterdepolarization

FDA Food and Drug Administration

GSA global sensitivity analysis

hERG human Ether-à-go-go-Related Gene

hESC-CM human embryonic stem cell-derived cardiomyocyte

hiPSC-CM human induced pluripotent stem cell-derived cardiomyocyte

I-V current-voltage

i.i.d. independent and identically distributed

ICH International Conference on Harmonisation
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LSA local sensitivity analysis

MAP maximum a posteriori

MCMC Markov Chain Monte Carlo

MwG Metropolis within Gibbs

OED optimal experimental design

pseudo-MwG pseudo-Metropolis within Gibbs

RMSD root-mean-square distance

RMSE root-mean-square error

RMSPE root-mean-square percentage error

RRMSE relative root-mean-square error

SNR signal-to-noise ratio

TdP Torsade de Pointes

UQ uncertainty quantification

VVUQ verification, validation, and uncertainty quantification
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